321 lines
12 KiB
Python
321 lines
12 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os
|
|
import os.path as osp
|
|
import shutil
|
|
import time
|
|
import warnings
|
|
|
|
import mmcv
|
|
import torch
|
|
from mmcv.cnn.utils import revert_sync_batchnorm
|
|
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
|
|
wrap_fp16_model)
|
|
from mmcv.utils import DictAction
|
|
|
|
from mmseg import digit_version
|
|
from mmseg.apis import multi_gpu_test, single_gpu_test
|
|
from mmseg.datasets import build_dataloader, build_dataset
|
|
from mmseg.models import build_segmentor
|
|
from mmseg.utils import build_ddp, build_dp, get_device, setup_multi_processes
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='mmseg test (and eval) a model')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
parser.add_argument(
|
|
'--work-dir',
|
|
help=('if specified, the evaluation metric results will be dumped'
|
|
'into the directory as json'))
|
|
parser.add_argument(
|
|
'--aug-test', action='store_true', help='Use Flip and Multi scale aug')
|
|
parser.add_argument('--out', help='output result file in pickle format')
|
|
parser.add_argument(
|
|
'--format-only',
|
|
action='store_true',
|
|
help='Format the output results without perform evaluation. It is'
|
|
'useful when you want to format the result to a specific format and '
|
|
'submit it to the test server')
|
|
parser.add_argument(
|
|
'--eval',
|
|
type=str,
|
|
nargs='+',
|
|
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"'
|
|
' for generic datasets, and "cityscapes" for Cityscapes')
|
|
parser.add_argument('--show', action='store_true', help='show results')
|
|
parser.add_argument(
|
|
'--show-dir', help='directory where painted images will be saved')
|
|
parser.add_argument(
|
|
'--gpu-collect',
|
|
action='store_true',
|
|
help='whether to use gpu to collect results.')
|
|
parser.add_argument(
|
|
'--gpu-id',
|
|
type=int,
|
|
default=0,
|
|
help='id of gpu to use '
|
|
'(only applicable to non-distributed testing)')
|
|
parser.add_argument(
|
|
'--tmpdir',
|
|
help='tmp directory used for collecting results from multiple '
|
|
'workers, available when gpu_collect is not specified')
|
|
parser.add_argument(
|
|
'--options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help="--options is deprecated in favor of --cfg_options' and it will "
|
|
'not be supported in version v0.22.0. Override some settings in the '
|
|
'used config, the key-value pair in xxx=yyy format will be merged '
|
|
'into config file. If the value to be overwritten is a list, it '
|
|
'should be like key="[a,b]" or key=a,b It also allows nested '
|
|
'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation '
|
|
'marks are necessary and that no white space is allowed.')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--eval-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='custom options for evaluation')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument(
|
|
'--opacity',
|
|
type=float,
|
|
default=0.5,
|
|
help='Opacity of painted segmentation map. In (0, 1] range.')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
if args.options and args.cfg_options:
|
|
raise ValueError(
|
|
'--options and --cfg-options cannot be both '
|
|
'specified, --options is deprecated in favor of --cfg-options. '
|
|
'--options will not be supported in version v0.22.0.')
|
|
if args.options:
|
|
warnings.warn('--options is deprecated in favor of --cfg-options. '
|
|
'--options will not be supported in version v0.22.0.')
|
|
args.cfg_options = args.options
|
|
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
assert args.out or args.eval or args.format_only or args.show \
|
|
or args.show_dir, \
|
|
('Please specify at least one operation (save/eval/format/show the '
|
|
'results / save the results) with the argument "--out", "--eval"'
|
|
', "--format-only", "--show" or "--show-dir"')
|
|
|
|
if args.eval and args.format_only:
|
|
raise ValueError('--eval and --format_only cannot be both specified')
|
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
|
|
raise ValueError('The output file must be a pkl file.')
|
|
|
|
cfg = mmcv.Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# set multi-process settings
|
|
setup_multi_processes(cfg)
|
|
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
if args.aug_test:
|
|
# hard code index
|
|
cfg.data.test.pipeline[1].img_ratios = [
|
|
0.5, 0.75, 1.0, 1.25, 1.5, 1.75
|
|
]
|
|
cfg.data.test.pipeline[1].flip = True
|
|
cfg.model.pretrained = None
|
|
cfg.data.test.test_mode = True
|
|
|
|
if args.gpu_id is not None:
|
|
cfg.gpu_ids = [args.gpu_id]
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
cfg.gpu_ids = [args.gpu_id]
|
|
distributed = False
|
|
if len(cfg.gpu_ids) > 1:
|
|
warnings.warn(f'The gpu-ids is reset from {cfg.gpu_ids} to '
|
|
f'{cfg.gpu_ids[0:1]} to avoid potential error in '
|
|
'non-distribute testing time.')
|
|
cfg.gpu_ids = cfg.gpu_ids[0:1]
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
rank, _ = get_dist_info()
|
|
# allows not to create
|
|
if args.work_dir is not None and rank == 0:
|
|
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
if args.aug_test:
|
|
json_file = osp.join(args.work_dir,
|
|
f'eval_multi_scale_{timestamp}.json')
|
|
else:
|
|
json_file = osp.join(args.work_dir,
|
|
f'eval_single_scale_{timestamp}.json')
|
|
elif rank == 0:
|
|
work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
mmcv.mkdir_or_exist(osp.abspath(work_dir))
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
if args.aug_test:
|
|
json_file = osp.join(work_dir,
|
|
f'eval_multi_scale_{timestamp}.json')
|
|
else:
|
|
json_file = osp.join(work_dir,
|
|
f'eval_single_scale_{timestamp}.json')
|
|
|
|
# build the dataloader
|
|
# TODO: support multiple images per gpu (only minor changes are needed)
|
|
dataset = build_dataset(cfg.data.test)
|
|
# The default loader config
|
|
loader_cfg = dict(
|
|
# cfg.gpus will be ignored if distributed
|
|
num_gpus=len(cfg.gpu_ids),
|
|
dist=distributed,
|
|
shuffle=False)
|
|
# The overall dataloader settings
|
|
loader_cfg.update({
|
|
k: v
|
|
for k, v in cfg.data.items() if k not in [
|
|
'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
|
|
'test_dataloader'
|
|
]
|
|
})
|
|
test_loader_cfg = {
|
|
**loader_cfg,
|
|
'samples_per_gpu': 1,
|
|
'shuffle': False, # Not shuffle by default
|
|
**cfg.data.get('test_dataloader', {})
|
|
}
|
|
# build the dataloader
|
|
data_loader = build_dataloader(dataset, **test_loader_cfg)
|
|
|
|
# build the model and load checkpoint
|
|
cfg.model.train_cfg = None
|
|
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
if fp16_cfg is not None:
|
|
wrap_fp16_model(model)
|
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
|
|
if 'CLASSES' in checkpoint.get('meta', {}):
|
|
model.CLASSES = checkpoint['meta']['CLASSES']
|
|
else:
|
|
print('"CLASSES" not found in meta, use dataset.CLASSES instead')
|
|
model.CLASSES = dataset.CLASSES
|
|
if 'PALETTE' in checkpoint.get('meta', {}):
|
|
model.PALETTE = checkpoint['meta']['PALETTE']
|
|
else:
|
|
print('"PALETTE" not found in meta, use dataset.PALETTE instead')
|
|
model.PALETTE = dataset.PALETTE
|
|
|
|
# clean gpu memory when starting a new evaluation.
|
|
torch.cuda.empty_cache()
|
|
eval_kwargs = {} if args.eval_options is None else args.eval_options
|
|
|
|
# Deprecated
|
|
efficient_test = eval_kwargs.get('efficient_test', False)
|
|
if efficient_test:
|
|
warnings.warn(
|
|
'``efficient_test=True`` does not have effect in tools/test.py, '
|
|
'the evaluation and format results are CPU memory efficient by '
|
|
'default')
|
|
|
|
eval_on_format_results = (
|
|
args.eval is not None and 'cityscapes' in args.eval)
|
|
if eval_on_format_results:
|
|
assert len(args.eval) == 1, 'eval on format results is not ' \
|
|
'applicable for metrics other than ' \
|
|
'cityscapes'
|
|
if args.format_only or eval_on_format_results:
|
|
if 'imgfile_prefix' in eval_kwargs:
|
|
tmpdir = eval_kwargs['imgfile_prefix']
|
|
else:
|
|
tmpdir = '.format_cityscapes'
|
|
eval_kwargs.setdefault('imgfile_prefix', tmpdir)
|
|
mmcv.mkdir_or_exist(tmpdir)
|
|
else:
|
|
tmpdir = None
|
|
|
|
cfg.device = get_device()
|
|
if not distributed:
|
|
warnings.warn(
|
|
'SyncBN is only supported with DDP. To be compatible with DP, '
|
|
'we convert SyncBN to BN. Please use dist_train.sh which can '
|
|
'avoid this error.')
|
|
if not torch.cuda.is_available():
|
|
assert digit_version(mmcv.__version__) >= digit_version('1.4.4'), \
|
|
'Please use MMCV >= 1.4.4 for CPU training!'
|
|
model = revert_sync_batchnorm(model)
|
|
model = build_dp(model, cfg.device, device_ids=cfg.gpu_ids)
|
|
results = single_gpu_test(
|
|
model,
|
|
data_loader,
|
|
args.show,
|
|
args.show_dir,
|
|
False,
|
|
args.opacity,
|
|
pre_eval=args.eval is not None and not eval_on_format_results,
|
|
format_only=args.format_only or eval_on_format_results,
|
|
format_args=eval_kwargs)
|
|
else:
|
|
model = build_ddp(
|
|
model,
|
|
cfg.device,
|
|
device_ids=[int(os.environ['LOCAL_RANK'])],
|
|
broadcast_buffers=False)
|
|
results = multi_gpu_test(
|
|
model,
|
|
data_loader,
|
|
args.tmpdir,
|
|
args.gpu_collect,
|
|
False,
|
|
pre_eval=args.eval is not None and not eval_on_format_results,
|
|
format_only=args.format_only or eval_on_format_results,
|
|
format_args=eval_kwargs)
|
|
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
if args.out:
|
|
warnings.warn(
|
|
'The behavior of ``args.out`` has been changed since MMSeg '
|
|
'v0.16, the pickled outputs could be seg map as type of '
|
|
'np.array, pre-eval results or file paths for '
|
|
'``dataset.format_results()``.')
|
|
print(f'\nwriting results to {args.out}')
|
|
mmcv.dump(results, args.out)
|
|
if args.eval:
|
|
eval_kwargs.update(metric=args.eval)
|
|
metric = dataset.evaluate(results, **eval_kwargs)
|
|
metric_dict = dict(config=args.config, metric=metric)
|
|
mmcv.dump(metric_dict, json_file, indent=4)
|
|
if tmpdir is not None and eval_on_format_results:
|
|
# remove tmp dir when cityscapes evaluation
|
|
shutil.rmtree(tmpdir)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|