mmsegmentation/.dev/gather_models.py

212 lines
7.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import hashlib
import json
import os
import os.path as osp
import shutil
import mmcv
import torch
# build schedule look-up table to automatically find the final model
RESULTS_LUT = ['mIoU', 'mAcc', 'aAcc']
def calculate_file_sha256(file_path):
"""calculate file sha256 hash code."""
with open(file_path, 'rb') as fp:
sha256_cal = hashlib.sha256()
sha256_cal.update(fp.read())
return sha256_cal.hexdigest()
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
if 'optimizer' in checkpoint:
del checkpoint['optimizer']
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
torch.save(checkpoint, out_file)
# The hash code calculation and rename command differ on different system
# platform.
sha = calculate_file_sha256(out_file)
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
os.rename(out_file, final_file)
# Remove prefix and suffix
final_file_name = osp.split(final_file)[1]
final_file_name = osp.splitext(final_file_name)[0]
return final_file_name
def get_final_iter(config):
iter_num = config.split('_')[-2]
assert iter_num.endswith('k')
return int(iter_num[:-1]) * 1000
def get_final_results(log_json_path, iter_num):
result_dict = dict()
last_iter = 0
with open(log_json_path, 'r') as f:
for line in f.readlines():
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
# When evaluation, the 'iter' of new log json is the evaluation
# steps on single gpu.
flag1 = ('aAcc' in log_line) or (log_line['mode'] == 'val')
flag2 = (last_iter == iter_num - 50) or (last_iter == iter_num)
if flag1 and flag2:
result_dict.update({
key: log_line[key]
for key in RESULTS_LUT if key in log_line
})
return result_dict
last_iter = log_line['iter']
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'-f', '--config-name', type=str, help='Process the selected config.')
parser.add_argument(
'-w',
'--work-dir',
default='work_dirs/',
type=str,
help='Ckpt storage root folder of benchmarked models to be gathered.')
parser.add_argument(
'-c',
'--collect-dir',
default='work_dirs/gather',
type=str,
help='Ckpt collect root folder of gathered models.')
parser.add_argument(
'--all', action='store_true', help='whether include .py and .log')
args = parser.parse_args()
return args
def main():
args = parse_args()
work_dir = args.work_dir
collect_dir = args.collect_dir
selected_config_name = args.config_name
mmcv.mkdir_or_exist(collect_dir)
# find all models in the root directory to be gathered
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
config_name = osp.splitext(osp.basename(raw_config))[0]
if osp.exists(osp.join(work_dir, config_name)):
if (selected_config_name is None
or selected_config_name == config_name):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config in used_configs:
config_name = osp.splitext(osp.basename(used_config))[0]
exp_dir = osp.join(work_dir, config_name)
# check whether the exps is finished
final_iter = get_final_iter(used_config)
final_model = 'iter_{}.pth'.format(final_iter)
model_path = osp.join(exp_dir, final_model)
# skip if the model is still training
if not osp.exists(model_path):
print(f'{used_config} train not finished yet')
continue
# get logs
log_json_paths = glob.glob(osp.join(exp_dir, '*.log.json'))
log_json_path = log_json_paths[0]
model_performance = None
for idx, _log_json_path in enumerate(log_json_paths):
model_performance = get_final_results(_log_json_path, final_iter)
if model_performance is not None:
log_json_path = _log_json_path
break
if model_performance is None:
print(f'{used_config} model_performance is None')
continue
model_time = osp.split(log_json_path)[-1].split('.')[0]
model_infos.append(
dict(
config_name=config_name,
results=model_performance,
iters=final_iter,
model_time=model_time,
log_json_path=osp.split(log_json_path)[-1]))
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
config_name = model['config_name']
model_publish_dir = osp.join(collect_dir, config_name)
publish_model_path = osp.join(model_publish_dir,
config_name + '_' + model['model_time'])
trained_model_path = osp.join(work_dir, config_name,
'iter_{}.pth'.format(model['iters']))
if osp.exists(model_publish_dir):
for file in os.listdir(model_publish_dir):
if file.endswith('.pth'):
print(f'model {file} found')
model['model_path'] = osp.abspath(
osp.join(model_publish_dir, file))
break
if 'model_path' not in model:
print(f'dir {model_publish_dir} exists, no model found')
else:
mmcv.mkdir_or_exist(model_publish_dir)
# convert model
final_model_path = process_checkpoint(trained_model_path,
publish_model_path)
model['model_path'] = final_model_path
new_json_path = f'{config_name}_{model["log_json_path"]}'
# copy log
shutil.copy(
osp.join(work_dir, config_name, model['log_json_path']),
osp.join(model_publish_dir, new_json_path))
if args.all:
new_txt_path = new_json_path.rstrip('.json')
shutil.copy(
osp.join(work_dir, config_name,
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, new_txt_path))
if args.all:
# copy config to guarantee reproducibility
raw_config = osp.join('./configs', f'{config_name}.py')
mmcv.Config.fromfile(raw_config).dump(
osp.join(model_publish_dir, osp.basename(raw_config)))
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
mmcv.dump(models, osp.join(collect_dir, 'model_infos.json'), indent=4)
if __name__ == '__main__':
main()