31 lines
821 B
Python
31 lines
821 B
Python
_base_ = [
|
|
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
|
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
|
]
|
|
|
|
model = dict(
|
|
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth',
|
|
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426)))
|
|
|
|
optimizer = dict(
|
|
_delete_=True,
|
|
type='AdamW',
|
|
lr=3e-5,
|
|
betas=(0.9, 0.999),
|
|
weight_decay=0.05,
|
|
constructor='LayerDecayOptimizerConstructor',
|
|
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9))
|
|
|
|
lr_config = dict(
|
|
_delete_=True,
|
|
policy='poly',
|
|
warmup='linear',
|
|
warmup_iters=1500,
|
|
warmup_ratio=1e-6,
|
|
power=1.0,
|
|
min_lr=0.0,
|
|
by_epoch=False)
|
|
|
|
# By default, models are trained on 8 GPUs with 2 images per GPU
|
|
data = dict(samples_per_gpu=2)
|