121 lines
4.2 KiB
Python
121 lines
4.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import os.path as osp
|
|
import time
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import torch
|
|
from mmcv import Config
|
|
from mmcv.parallel import MMDataParallel
|
|
from mmcv.runner import load_checkpoint, wrap_fp16_model
|
|
|
|
from mmseg.datasets import build_dataloader, build_dataset
|
|
from mmseg.models import build_segmentor
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='MMSeg benchmark a model')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
parser.add_argument(
|
|
'--log-interval', type=int, default=50, help='interval of logging')
|
|
parser.add_argument(
|
|
'--work-dir',
|
|
help=('if specified, the results will be dumped '
|
|
'into the directory as json'))
|
|
parser.add_argument('--repeat-times', type=int, default=1)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
if args.work_dir is not None:
|
|
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
|
|
json_file = osp.join(args.work_dir, f'fps_{timestamp}.json')
|
|
else:
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
work_dir = osp.join('./work_dirs',
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
mmcv.mkdir_or_exist(osp.abspath(work_dir))
|
|
json_file = osp.join(work_dir, f'fps_{timestamp}.json')
|
|
|
|
repeat_times = args.repeat_times
|
|
# set cudnn_benchmark
|
|
torch.backends.cudnn.benchmark = False
|
|
cfg.model.pretrained = None
|
|
cfg.data.test.test_mode = True
|
|
|
|
benchmark_dict = dict(config=args.config, unit='img / s')
|
|
overall_fps_list = []
|
|
for time_index in range(repeat_times):
|
|
print(f'Run {time_index + 1}:')
|
|
# build the dataloader
|
|
# TODO: support multiple images per gpu (only minor changes are needed)
|
|
dataset = build_dataset(cfg.data.test)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=1,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=False,
|
|
shuffle=False)
|
|
|
|
# build the model and load checkpoint
|
|
cfg.model.train_cfg = None
|
|
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
if fp16_cfg is not None:
|
|
wrap_fp16_model(model)
|
|
if 'checkpoint' in args and osp.exists(args.checkpoint):
|
|
load_checkpoint(model, args.checkpoint, map_location='cpu')
|
|
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
|
|
model.eval()
|
|
|
|
# the first several iterations may be very slow so skip them
|
|
num_warmup = 5
|
|
pure_inf_time = 0
|
|
total_iters = 200
|
|
|
|
# benchmark with 200 image and take the average
|
|
for i, data in enumerate(data_loader):
|
|
|
|
torch.cuda.synchronize()
|
|
start_time = time.perf_counter()
|
|
|
|
with torch.no_grad():
|
|
model(return_loss=False, rescale=True, **data)
|
|
|
|
torch.cuda.synchronize()
|
|
elapsed = time.perf_counter() - start_time
|
|
|
|
if i >= num_warmup:
|
|
pure_inf_time += elapsed
|
|
if (i + 1) % args.log_interval == 0:
|
|
fps = (i + 1 - num_warmup) / pure_inf_time
|
|
print(f'Done image [{i + 1:<3}/ {total_iters}], '
|
|
f'fps: {fps:.2f} img / s')
|
|
|
|
if (i + 1) == total_iters:
|
|
fps = (i + 1 - num_warmup) / pure_inf_time
|
|
print(f'Overall fps: {fps:.2f} img / s\n')
|
|
benchmark_dict[f'overall_fps_{time_index + 1}'] = round(fps, 2)
|
|
overall_fps_list.append(fps)
|
|
break
|
|
benchmark_dict['average_fps'] = round(np.mean(overall_fps_list), 2)
|
|
benchmark_dict['fps_variance'] = round(np.var(overall_fps_list), 4)
|
|
print(f'Average fps of {repeat_times} evaluations: '
|
|
f'{benchmark_dict["average_fps"]}')
|
|
print(f'The variance of {repeat_times} evaluations: '
|
|
f'{benchmark_dict["fps_variance"]}')
|
|
mmcv.dump(benchmark_dict, json_file, indent=4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|