mmsegmentation/projects/mapillary_dataset/configs/deeplabv3plus_r101-d8_4xb2-...

104 lines
3.2 KiB
Python

_base_ = ['./_base_/datasets/mapillary_v1_2.py'] # v 1.2 labels
# _base_ = ['./_base_/datasets/mapillary_v2_0.py'] # v2.0 labels
custom_imports = dict(imports=[
'projects.mapillary_dataset.mmseg.datasets.mapillary_v1_2',
'projects.mapillary_dataset.mmseg.datasets.mapillary_v2_0',
])
norm_cfg = dict(type='SyncBN', requires_grad=True)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_val=0,
seg_pad_val=255,
size=(512, 1024))
model = dict(
type='EncoderDecoder',
data_preprocessor=data_preprocessor,
pretrained=None,
backbone=dict(
type='ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=dict(
type='DepthwiseSeparableASPPHead',
in_channels=2048,
in_index=3,
channels=512,
dilations=(1, 12, 24, 36),
c1_in_channels=256,
c1_channels=48,
dropout_ratio=0.1,
num_classes=66, # v1.2
# num_classes=124, # v2.0
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=1024,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=66, # v1.2
# num_classes=124, # v2.0
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
train_cfg=dict(),
test_cfg=dict(mode='whole'))
default_scope = 'mmseg'
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='SegLocalVisualizer',
vis_backends=[dict(type='LocalVisBackend')],
name='visualizer')
log_processor = dict(by_epoch=False)
log_level = 'INFO'
load_from = None
resume = False
tta_model = dict(type='SegTTAModel')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001),
clip_grad=None)
param_scheduler = [
dict(
type='PolyLR',
eta_min=0.0001,
power=0.9,
begin=0,
end=240000,
by_epoch=False)
]
train_cfg = dict(
type='IterBasedTrainLoop', max_iters=240000, val_interval=24000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=24000),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='SegVisualizationHook'))