mmsegmentation/configs/isanet/isanet.yml

370 lines
11 KiB
YAML

Collections:
- Name: ISANet
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
URL: https://arxiv.org/abs/1907.12273
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
README: configs/isanet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Version: v0.18.0
Converted From:
Code: https://github.com/openseg-group/openseg.pytorch
Models:
- Name: isanet_r50-d8_512x1024_40k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 343.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 5.869
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.49
mIoU(ms+flip): 79.44
Config: configs/isanet/isanet_r50-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth
- Name: isanet_r50-d8_512x1024_80k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 343.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 5.869
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.68
mIoU(ms+flip): 80.25
Config: configs/isanet/isanet_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth
- Name: isanet_r50-d8_769x769_40k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 649.35
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 6.759
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.7
mIoU(ms+flip): 80.28
Config: configs/isanet/isanet_r50-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth
- Name: isanet_r50-d8_769x769_80k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 649.35
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 6.759
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.29
mIoU(ms+flip): 80.53
Config: configs/isanet/isanet_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth
- Name: isanet_r101-d8_512x1024_40k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 425.53
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 9.425
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.58
mIoU(ms+flip): 81.05
Config: configs/isanet/isanet_r101-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth
- Name: isanet_r101-d8_512x1024_80k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 425.53
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 9.425
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.32
mIoU(ms+flip): 81.58
Config: configs/isanet/isanet_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth
- Name: isanet_r101-d8_769x769_40k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 1086.96
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 10.815
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.68
mIoU(ms+flip): 80.95
Config: configs/isanet/isanet_r101-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth
- Name: isanet_r101-d8_769x769_80k_cityscapes
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 1086.96
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 10.815
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.61
mIoU(ms+flip): 81.59
Config: configs/isanet/isanet_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth
- Name: isanet_r50-d8_512x512_80k_ade20k
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 44.35
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.0
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.12
mIoU(ms+flip): 42.35
Config: configs/isanet/isanet_r50-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth
- Name: isanet_r50-d8_512x512_160k_ade20k
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 44.35
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.0
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.59
mIoU(ms+flip): 43.07
Config: configs/isanet/isanet_r50-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth
- Name: isanet_r101-d8_512x512_80k_ade20k
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 94.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 12.562
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.51
mIoU(ms+flip): 44.38
Config: configs/isanet/isanet_r101-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth
- Name: isanet_r101-d8_512x512_160k_ade20k
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 94.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 12.562
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.8
mIoU(ms+flip): 45.4
Config: configs/isanet/isanet_r101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth
- Name: isanet_r50-d8_512x512_20k_voc12aug
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 43.33
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.9
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.78
mIoU(ms+flip): 77.79
Config: configs/isanet/isanet_r50-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth
- Name: isanet_r50-d8_512x512_40k_voc12aug
In Collection: ISANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 43.33
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.9
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.2
mIoU(ms+flip): 77.22
Config: configs/isanet/isanet_r50-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth
- Name: isanet_r101-d8_512x512_20k_voc12aug
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 134.77
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.465
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 78.46
mIoU(ms+flip): 79.16
Config: configs/isanet/isanet_r101-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth
- Name: isanet_r101-d8_512x512_40k_voc12aug
In Collection: ISANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 40000
inference time (ms/im):
- value: 134.77
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.465
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 78.12
mIoU(ms+flip): 79.04
Config: configs/isanet/isanet_r101-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth