45 lines
1.3 KiB
Python
45 lines
1.3 KiB
Python
# model settings
|
|
backbone_norm_cfg = dict(type='LN')
|
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
|
model = dict(
|
|
type='EncoderDecoder',
|
|
backbone=dict(
|
|
type='PCPVT',
|
|
init_cfg=dict(
|
|
type='Pretrained', checkpoint='pretrained/pcpvt_small.pth'),
|
|
in_channels=3,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
patch_sizes=[4, 2, 2, 2],
|
|
strides=[4, 2, 2, 2],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
out_indices=(0, 1, 2, 3),
|
|
qkv_bias=True,
|
|
norm_cfg=backbone_norm_cfg,
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
norm_after_stage=False,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.,
|
|
drop_path_rate=0.2),
|
|
neck=dict(
|
|
type='FPN',
|
|
in_channels=[64, 128, 320, 512],
|
|
out_channels=256,
|
|
num_outs=4),
|
|
decode_head=dict(
|
|
type='FPNHead',
|
|
in_channels=[256, 256, 256, 256],
|
|
in_index=[0, 1, 2, 3],
|
|
feature_strides=[4, 8, 16, 32],
|
|
channels=128,
|
|
dropout_ratio=0.1,
|
|
num_classes=150,
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
|
# model training and testing settings
|
|
train_cfg=dict(),
|
|
test_cfg=dict(mode='whole'))
|