mmsegmentation/configs/swin
Junjun2016 18bbad97f8 Fix random behavior of update_model_index in pre-commit hook (#784) 2021-08-15 23:33:08 +08:00
..
README.md fix swin readme (#764) 2021-08-08 14:10:00 -07:00
swin.yml Fix random behavior of update_model_index in pre-commit hook (#784) 2021-08-15 23:33:08 +08:00
upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py [WIP] Add Swin Transformer (#511) 2021-07-01 23:41:55 +08:00
upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py [WIP] Add Swin Transformer (#511) 2021-07-01 23:41:55 +08:00
upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py [WIP] Add Swin Transformer (#511) 2021-07-01 23:41:55 +08:00
upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py [WIP] Add Swin Transformer (#511) 2021-07-01 23:41:55 +08:00
upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py [WIP] Add Swin Transformer (#511) 2021-07-01 23:41:55 +08:00
upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py [WIP] Add Swin Transformer (#511) 2021-07-01 23:41:55 +08:00

README.md

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Introduction

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}

Results and models

ADE20K

Method Backbone Crop Size pretrain pretrain img size Batch Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
UperNet Swin-T 512x512 ImageNet-1K 224x224 16 160000 5.02 21.06 44.41 45.79 config model | log
UperNet Swin-S 512x512 ImageNet-1K 224x224 16 160000 6.17 14.72 47.72 49.24 config model | log
UperNet Swin-B 512x512 ImageNet-1K 224x224 16 160000 7.61 12.65 47.99 49.57 config model | log
UperNet Swin-B 512x512 ImageNet-22K 224x224 16 160000 - - 50.31 51.9 config model | log
UperNet Swin-B 512x512 ImageNet-1K 384x384 16 160000 8.52 12.10 48.35 49.65 config model | log
UperNet Swin-B 512x512 ImageNet-22K 384x384 16 160000 - - 50.76 52.4 config model | log