mmsegmentation/tests/test_models/test_necks/test_ic_neck.py

54 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.necks import ICNeck
from mmseg.models.necks.ic_neck import CascadeFeatureFusion
from ..test_heads.utils import _conv_has_norm, to_cuda
def test_ic_neck():
# test with norm_cfg
neck = ICNeck(
in_channels=(4, 16, 16),
out_channels=8,
norm_cfg=dict(type='SyncBN'),
align_corners=False)
assert _conv_has_norm(neck, sync_bn=True)
inputs = [
torch.randn(1, 4, 32, 64),
torch.randn(1, 16, 16, 32),
torch.randn(1, 16, 8, 16)
]
neck = ICNeck(
in_channels=(4, 16, 16),
out_channels=4,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False)
if torch.cuda.is_available():
neck, inputs = to_cuda(neck, inputs)
outputs = neck(inputs)
assert outputs[0].shape == (1, 4, 16, 32)
assert outputs[1].shape == (1, 4, 32, 64)
assert outputs[1].shape == (1, 4, 32, 64)
def test_ic_neck_cascade_feature_fusion():
cff = CascadeFeatureFusion(64, 64, 32)
assert cff.conv_low.in_channels == 64
assert cff.conv_low.out_channels == 32
assert cff.conv_high.in_channels == 64
assert cff.conv_high.out_channels == 32
def test_ic_neck_input_channels():
with pytest.raises(AssertionError):
# ICNet Neck input channel constraints.
ICNeck(
in_channels=(16, 64, 64, 64),
out_channels=32,
norm_cfg=dict(type='BN', requires_grad=True),
align_corners=False)