谢昕辰 52b4fa5b9a
[Enhancement] md2yml pre-commit hook (#732)
* init script

* update scripts and generate new yml

* fix lint: deeplabv3plus.yml

* modify resolution representation

* remove  field

* format crop_size
2021-07-31 09:31:58 -07:00

95 lines
2.8 KiB
YAML

Collections:
- Name: emanet
Metadata:
Training Data:
- Cityscapes
Models:
- Name: emanet_r50-d8_512x1024_80k_cityscapes
In Collection: emanet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 218.34
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 5.4
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.59
mIoU(ms+flip): 79.44
Config: configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth
- Name: emanet_r101-d8_512x1024_80k_cityscapes
In Collection: emanet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 348.43
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 6.2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.1
mIoU(ms+flip): 81.21
Config: configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth
- Name: emanet_r50-d8_769x769_80k_cityscapes
In Collection: emanet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 507.61
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
memory (GB): 8.9
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.33
mIoU(ms+flip): 80.49
Config: configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth
- Name: emanet_r101-d8_769x769_80k_cityscapes
In Collection: emanet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
inference time (ms/im):
- value: 819.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
memory (GB): 10.1
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.62
mIoU(ms+flip): 81.0
Config: configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth