mmsegmentation/configs/mask2former/mask2former_r50_8xb2-90k_cityscapes-512x1024.py
谢昕辰 163277bfe0
[Feature] Support Mask2former in MMSeg 1.x (#2255)
* init commits

* fix crop size

* add seg_data2instance_data method

* add ut and update requirement

* update configs and readme

* add model-indel

* update optional requirements

* fix results

* fix lint error

* update results

* update results

* remove mmdet from requirements/optional.txt

* use try import and update README

* add docstring to overwrtied method

* minor change

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
2022-12-05 18:34:24 +08:00

207 lines
7.1 KiB
Python

_base_ = ['../_base_/default_runtime.py', '../_base_/datasets/cityscapes.py']
custom_imports = dict(imports='mmdet.models', allow_failed_imports=False)
crop_size = (512, 1024)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_val=0,
seg_pad_val=255,
size=crop_size,
test_cfg=dict(size_divisor=32))
num_classes = 19
model = dict(
type='EncoderDecoder',
data_preprocessor=data_preprocessor,
backbone=dict(
type='ResNet',
depth=50,
deep_stem=False,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='SyncBN', requires_grad=False),
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
decode_head=dict(
type='Mask2FormerHead',
in_channels=[256, 512, 1024, 2048],
strides=[4, 8, 16, 32],
feat_channels=256,
out_channels=256,
num_classes=num_classes,
num_queries=100,
num_transformer_feat_level=3,
align_corners=False,
pixel_decoder=dict(
type='mmdet.MSDeformAttnPixelDecoder',
num_outs=3,
norm_cfg=dict(type='GN', num_groups=32),
act_cfg=dict(type='ReLU'),
encoder=dict(
type='mmdet.DetrTransformerEncoder',
num_layers=6,
transformerlayers=dict(
type='mmdet.BaseTransformerLayer',
attn_cfgs=dict(
type='mmdet.MultiScaleDeformableAttention',
embed_dims=256,
num_heads=8,
num_levels=3,
num_points=4,
im2col_step=64,
dropout=0.0,
batch_first=False,
norm_cfg=None,
init_cfg=None),
ffn_cfgs=dict(
type='FFN',
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
ffn_drop=0.0,
act_cfg=dict(type='ReLU', inplace=True)),
operation_order=('self_attn', 'norm', 'ffn', 'norm')),
init_cfg=None),
positional_encoding=dict(
type='mmdet.SinePositionalEncoding',
num_feats=128,
normalize=True),
init_cfg=None),
enforce_decoder_input_project=False,
positional_encoding=dict(
type='mmdet.SinePositionalEncoding', num_feats=128,
normalize=True),
transformer_decoder=dict(
type='mmdet.DetrTransformerDecoder',
return_intermediate=True,
num_layers=9,
transformerlayers=dict(
type='mmdet.DetrTransformerDecoderLayer',
attn_cfgs=dict(
type='mmdet.MultiheadAttention',
embed_dims=256,
num_heads=8,
attn_drop=0.0,
proj_drop=0.0,
dropout_layer=None,
batch_first=False),
ffn_cfgs=dict(
embed_dims=256,
feedforward_channels=2048,
num_fcs=2,
act_cfg=dict(type='ReLU', inplace=True),
ffn_drop=0.0,
dropout_layer=None,
add_identity=True),
feedforward_channels=2048,
operation_order=('cross_attn', 'norm', 'self_attn', 'norm',
'ffn', 'norm')),
init_cfg=None),
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
loss_weight=2.0,
reduction='mean',
class_weight=[1.0] * num_classes + [0.1]),
loss_mask=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=5.0),
loss_dice=dict(
type='mmdet.DiceLoss',
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=True,
eps=1.0,
loss_weight=5.0),
train_cfg=dict(
num_points=12544,
oversample_ratio=3.0,
importance_sample_ratio=0.75,
assigner=dict(
type='mmdet.HungarianAssigner',
match_costs=[
dict(type='mmdet.ClassificationCost', weight=2.0),
dict(
type='mmdet.CrossEntropyLossCost',
weight=5.0,
use_sigmoid=True),
dict(
type='mmdet.DiceCost',
weight=5.0,
pred_act=True,
eps=1.0)
]),
sampler=dict(type='mmdet.MaskPseudoSampler'))),
train_cfg=dict(),
test_cfg=dict(mode='whole'))
# dataset config
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='RandomChoiceResize',
scales=[int(1024 * x * 0.1) for x in range(5, 21)],
resize_type='ResizeShortestEdge',
max_size=4096),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
# optimizer
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
optimizer = dict(
type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999))
optim_wrapper = dict(
type='OptimWrapper',
optimizer=optimizer,
clip_grad=dict(max_norm=0.01, norm_type=2),
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi,
},
norm_decay_mult=0.0))
# learning policy
param_scheduler = [
dict(
type='PolyLR',
eta_min=0,
power=0.9,
begin=0,
end=90000,
by_epoch=False)
]
# training schedule for 90k
train_cfg = dict(type='IterBasedTrainLoop', max_iters=90000, val_interval=5000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(
type='CheckpointHook', by_epoch=False, interval=5000,
save_best='mIoU'),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='SegVisualizationHook'))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)