mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation 1. It is used to save the segmentation predictions as files and upload these files to a test server ## Modification 1. Add output_file and format only in `IoUMetric` ## BC-breaking (Optional) No ## Use cases (Optional) If this PR introduces a new feature, it is better to list some use cases here, and update the documentation. ## Checklist 1. Pre-commit or other linting tools are used to fix the potential lint issues. 3. The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness. 4. If the modification has potential influence on downstream projects, this PR should be tested with downstream projects, like MMDet or MMDet3D. 5. The documentation has been modified accordingly, like docstring or example tutorials.
287 lines
12 KiB
Python
287 lines
12 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import os.path as osp
|
|
from collections import OrderedDict
|
|
from typing import Dict, List, Optional, Sequence
|
|
|
|
import numpy as np
|
|
import torch
|
|
from mmengine.dist import is_main_process
|
|
from mmengine.evaluator import BaseMetric
|
|
from mmengine.logging import MMLogger, print_log
|
|
from mmengine.utils import mkdir_or_exist
|
|
from PIL import Image
|
|
from prettytable import PrettyTable
|
|
|
|
from mmseg.registry import METRICS
|
|
|
|
|
|
@METRICS.register_module()
|
|
class IoUMetric(BaseMetric):
|
|
"""IoU evaluation metric.
|
|
|
|
Args:
|
|
ignore_index (int): Index that will be ignored in evaluation.
|
|
Default: 255.
|
|
iou_metrics (list[str] | str): Metrics to be calculated, the options
|
|
includes 'mIoU', 'mDice' and 'mFscore'.
|
|
nan_to_num (int, optional): If specified, NaN values will be replaced
|
|
by the numbers defined by the user. Default: None.
|
|
beta (int): Determines the weight of recall in the combined score.
|
|
Default: 1.
|
|
collect_device (str): Device name used for collecting results from
|
|
different ranks during distributed training. Must be 'cpu' or
|
|
'gpu'. Defaults to 'cpu'.
|
|
output_dir (str): The directory for output prediction. Defaults to
|
|
None.
|
|
format_only (bool): Only format result for results commit without
|
|
perform evaluation. It is useful when you want to save the result
|
|
to a specific format and submit it to the test server.
|
|
Defaults to False.
|
|
prefix (str, optional): The prefix that will be added in the metric
|
|
names to disambiguate homonymous metrics of different evaluators.
|
|
If prefix is not provided in the argument, self.default_prefix
|
|
will be used instead. Defaults to None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
ignore_index: int = 255,
|
|
iou_metrics: List[str] = ['mIoU'],
|
|
nan_to_num: Optional[int] = None,
|
|
beta: int = 1,
|
|
collect_device: str = 'cpu',
|
|
output_dir: Optional[str] = None,
|
|
format_only: bool = False,
|
|
prefix: Optional[str] = None,
|
|
**kwargs) -> None:
|
|
super().__init__(collect_device=collect_device, prefix=prefix)
|
|
|
|
self.ignore_index = ignore_index
|
|
self.metrics = iou_metrics
|
|
self.nan_to_num = nan_to_num
|
|
self.beta = beta
|
|
self.output_dir = output_dir
|
|
if self.output_dir and is_main_process():
|
|
mkdir_or_exist(self.output_dir)
|
|
self.format_only = format_only
|
|
|
|
def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
|
|
"""Process one batch of data and data_samples.
|
|
|
|
The processed results should be stored in ``self.results``, which will
|
|
be used to compute the metrics when all batches have been processed.
|
|
|
|
Args:
|
|
data_batch (dict): A batch of data from the dataloader.
|
|
data_samples (Sequence[dict]): A batch of outputs from the model.
|
|
"""
|
|
num_classes = len(self.dataset_meta['classes'])
|
|
for data_sample in data_samples:
|
|
pred_label = data_sample['pred_sem_seg']['data'].squeeze()
|
|
# format_only always for test dataset without ground truth
|
|
if not self.format_only:
|
|
label = data_sample['gt_sem_seg']['data'].squeeze().to(
|
|
pred_label)
|
|
self.results.append(
|
|
self.intersect_and_union(pred_label, label, num_classes,
|
|
self.ignore_index))
|
|
# format_result
|
|
if self.output_dir is not None:
|
|
basename = osp.splitext(osp.basename(
|
|
data_sample['img_path']))[0]
|
|
png_filename = osp.abspath(
|
|
osp.join(self.output_dir, f'{basename}.png'))
|
|
output_mask = pred_label.cpu().numpy()
|
|
# The index range of official ADE20k dataset is from 0 to 150.
|
|
# But the index range of output is from 0 to 149.
|
|
# That is because we set reduce_zero_label=True.
|
|
if data_sample.get('reduce_zero_label', False):
|
|
output_mask = output_mask + 1
|
|
output = Image.fromarray(output_mask.astype(np.uint8))
|
|
output.save(png_filename)
|
|
|
|
def compute_metrics(self, results: list) -> Dict[str, float]:
|
|
"""Compute the metrics from processed results.
|
|
|
|
Args:
|
|
results (list): The processed results of each batch.
|
|
|
|
Returns:
|
|
Dict[str, float]: The computed metrics. The keys are the names of
|
|
the metrics, and the values are corresponding results. The key
|
|
mainly includes aAcc, mIoU, mAcc, mDice, mFscore, mPrecision,
|
|
mRecall.
|
|
"""
|
|
logger: MMLogger = MMLogger.get_current_instance()
|
|
if self.format_only:
|
|
logger.info(f'results are saved to {osp.dirname(self.output_dir)}')
|
|
return OrderedDict()
|
|
# convert list of tuples to tuple of lists, e.g.
|
|
# [(A_1, B_1, C_1, D_1), ..., (A_n, B_n, C_n, D_n)] to
|
|
# ([A_1, ..., A_n], ..., [D_1, ..., D_n])
|
|
results = tuple(zip(*results))
|
|
assert len(results) == 4
|
|
|
|
total_area_intersect = sum(results[0])
|
|
total_area_union = sum(results[1])
|
|
total_area_pred_label = sum(results[2])
|
|
total_area_label = sum(results[3])
|
|
ret_metrics = self.total_area_to_metrics(
|
|
total_area_intersect, total_area_union, total_area_pred_label,
|
|
total_area_label, self.metrics, self.nan_to_num, self.beta)
|
|
|
|
class_names = self.dataset_meta['classes']
|
|
|
|
# summary table
|
|
ret_metrics_summary = OrderedDict({
|
|
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
|
|
for ret_metric, ret_metric_value in ret_metrics.items()
|
|
})
|
|
metrics = dict()
|
|
for key, val in ret_metrics_summary.items():
|
|
if key == 'aAcc':
|
|
metrics[key] = val
|
|
else:
|
|
metrics['m' + key] = val
|
|
|
|
# each class table
|
|
ret_metrics.pop('aAcc', None)
|
|
ret_metrics_class = OrderedDict({
|
|
ret_metric: np.round(ret_metric_value * 100, 2)
|
|
for ret_metric, ret_metric_value in ret_metrics.items()
|
|
})
|
|
ret_metrics_class.update({'Class': class_names})
|
|
ret_metrics_class.move_to_end('Class', last=False)
|
|
class_table_data = PrettyTable()
|
|
for key, val in ret_metrics_class.items():
|
|
class_table_data.add_column(key, val)
|
|
|
|
print_log('per class results:', logger)
|
|
print_log('\n' + class_table_data.get_string(), logger=logger)
|
|
|
|
return metrics
|
|
|
|
@staticmethod
|
|
def intersect_and_union(pred_label: torch.tensor, label: torch.tensor,
|
|
num_classes: int, ignore_index: int):
|
|
"""Calculate Intersection and Union.
|
|
|
|
Args:
|
|
pred_label (torch.tensor): Prediction segmentation map
|
|
or predict result filename. The shape is (H, W).
|
|
label (torch.tensor): Ground truth segmentation map
|
|
or label filename. The shape is (H, W).
|
|
num_classes (int): Number of categories.
|
|
ignore_index (int): Index that will be ignored in evaluation.
|
|
|
|
Returns:
|
|
torch.Tensor: The intersection of prediction and ground truth
|
|
histogram on all classes.
|
|
torch.Tensor: The union of prediction and ground truth histogram on
|
|
all classes.
|
|
torch.Tensor: The prediction histogram on all classes.
|
|
torch.Tensor: The ground truth histogram on all classes.
|
|
"""
|
|
|
|
mask = (label != ignore_index)
|
|
pred_label = pred_label[mask]
|
|
label = label[mask]
|
|
|
|
intersect = pred_label[pred_label == label]
|
|
area_intersect = torch.histc(
|
|
intersect.float(), bins=(num_classes), min=0,
|
|
max=num_classes - 1).cpu()
|
|
area_pred_label = torch.histc(
|
|
pred_label.float(), bins=(num_classes), min=0,
|
|
max=num_classes - 1).cpu()
|
|
area_label = torch.histc(
|
|
label.float(), bins=(num_classes), min=0,
|
|
max=num_classes - 1).cpu()
|
|
area_union = area_pred_label + area_label - area_intersect
|
|
return area_intersect, area_union, area_pred_label, area_label
|
|
|
|
@staticmethod
|
|
def total_area_to_metrics(total_area_intersect: np.ndarray,
|
|
total_area_union: np.ndarray,
|
|
total_area_pred_label: np.ndarray,
|
|
total_area_label: np.ndarray,
|
|
metrics: List[str] = ['mIoU'],
|
|
nan_to_num: Optional[int] = None,
|
|
beta: int = 1):
|
|
"""Calculate evaluation metrics
|
|
Args:
|
|
total_area_intersect (np.ndarray): The intersection of prediction
|
|
and ground truth histogram on all classes.
|
|
total_area_union (np.ndarray): The union of prediction and ground
|
|
truth histogram on all classes.
|
|
total_area_pred_label (np.ndarray): The prediction histogram on
|
|
all classes.
|
|
total_area_label (np.ndarray): The ground truth histogram on
|
|
all classes.
|
|
metrics (List[str] | str): Metrics to be evaluated, 'mIoU' and
|
|
'mDice'.
|
|
nan_to_num (int, optional): If specified, NaN values will be
|
|
replaced by the numbers defined by the user. Default: None.
|
|
beta (int): Determines the weight of recall in the combined score.
|
|
Default: 1.
|
|
Returns:
|
|
Dict[str, np.ndarray]: per category evaluation metrics,
|
|
shape (num_classes, ).
|
|
"""
|
|
|
|
def f_score(precision, recall, beta=1):
|
|
"""calculate the f-score value.
|
|
|
|
Args:
|
|
precision (float | torch.Tensor): The precision value.
|
|
recall (float | torch.Tensor): The recall value.
|
|
beta (int): Determines the weight of recall in the combined
|
|
score. Default: 1.
|
|
|
|
Returns:
|
|
[torch.tensor]: The f-score value.
|
|
"""
|
|
score = (1 + beta**2) * (precision * recall) / (
|
|
(beta**2 * precision) + recall)
|
|
return score
|
|
|
|
if isinstance(metrics, str):
|
|
metrics = [metrics]
|
|
allowed_metrics = ['mIoU', 'mDice', 'mFscore']
|
|
if not set(metrics).issubset(set(allowed_metrics)):
|
|
raise KeyError(f'metrics {metrics} is not supported')
|
|
|
|
all_acc = total_area_intersect.sum() / total_area_label.sum()
|
|
ret_metrics = OrderedDict({'aAcc': all_acc})
|
|
for metric in metrics:
|
|
if metric == 'mIoU':
|
|
iou = total_area_intersect / total_area_union
|
|
acc = total_area_intersect / total_area_label
|
|
ret_metrics['IoU'] = iou
|
|
ret_metrics['Acc'] = acc
|
|
elif metric == 'mDice':
|
|
dice = 2 * total_area_intersect / (
|
|
total_area_pred_label + total_area_label)
|
|
acc = total_area_intersect / total_area_label
|
|
ret_metrics['Dice'] = dice
|
|
ret_metrics['Acc'] = acc
|
|
elif metric == 'mFscore':
|
|
precision = total_area_intersect / total_area_pred_label
|
|
recall = total_area_intersect / total_area_label
|
|
f_value = torch.tensor([
|
|
f_score(x[0], x[1], beta) for x in zip(precision, recall)
|
|
])
|
|
ret_metrics['Fscore'] = f_value
|
|
ret_metrics['Precision'] = precision
|
|
ret_metrics['Recall'] = recall
|
|
|
|
ret_metrics = {
|
|
metric: value.numpy()
|
|
for metric, value in ret_metrics.items()
|
|
}
|
|
if nan_to_num is not None:
|
|
ret_metrics = OrderedDict({
|
|
metric: np.nan_to_num(metric_value, nan=nan_to_num)
|
|
for metric, metric_value in ret_metrics.items()
|
|
})
|
|
return ret_metrics
|