mmsegmentation/configs/resnest/resnest.yml

184 lines
5.5 KiB
YAML

Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20k
Name: resnest
Models:
- Config: configs/resnest/fcn_s101-d8_512x1024_80k_cityscapes.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 418.41
lr schd: 80000
memory (GB): 11.4
Name: fcn_s101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.56
mIoU(ms+flip): 78.98
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth
- Config: configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 396.83
lr schd: 80000
memory (GB): 11.8
Name: pspnet_s101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.57
mIoU(ms+flip): 79.19
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth
- Config: configs/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 531.91
lr schd: 80000
memory (GB): 11.9
Name: deeplabv3_s101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.67
mIoU(ms+flip): 80.51
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth
- Config: configs/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 423.73
lr schd: 80000
memory (GB): 13.2
Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.62
mIoU(ms+flip): 80.27
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth
- Config: configs/resnest/fcn_s101-d8_512x512_160k_ade20k.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 77.76
lr schd: 160000
memory (GB): 14.2
Name: fcn_s101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 45.62
mIoU(ms+flip): 46.16
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth
- Config: configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 76.8
lr schd: 160000
memory (GB): 14.2
Name: pspnet_s101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 45.44
mIoU(ms+flip): 46.28
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth
- Config: configs/resnest/deeplabv3_s101-d8_512x512_160k_ade20k.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 107.76
lr schd: 160000
memory (GB): 14.6
Name: deeplabv3_s101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 45.71
mIoU(ms+flip): 46.59
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth
- Config: configs/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k.py
In Collection: resnest
Metadata:
backbone: S-101-D8
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 83.61
lr schd: 160000
memory (GB): 16.2
Name: deeplabv3plus_s101-d8_512x512_160k_ade20k
Results:
Dataset: ADE20k
Metrics:
mIoU: 46.47
mIoU(ms+flip): 47.27
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth