mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
388 lines
16 KiB
YAML
388 lines
16 KiB
YAML
Collections:
|
|
- Name: DANet
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
README: configs/danet/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: danet_r50-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.74
|
|
Config: configs/danet/danet_r50-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 7.4
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.52
|
|
Config: configs/danet/danet_r101-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 10.9
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb2-40k_cityscapes-769x769
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.88
|
|
mIoU(ms+flip): 80.62
|
|
Config: configs/danet/danet_r50-d8_4xb2-40k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 8.8
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb2-40k_cityscapes-769x769
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.88
|
|
mIoU(ms+flip): 81.47
|
|
Config: configs/danet/danet_r101-d8_4xb2-40k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 12.8
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb2-80k_cityscapes-512x1024
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.34
|
|
Config: configs/danet/danet_r50-d8_4xb2-80k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb2-80k_cityscapes-512x1024
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.41
|
|
Config: configs/danet/danet_r101-d8_4xb2-80k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb2-80k_cityscapes-769x769
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.27
|
|
mIoU(ms+flip): 80.96
|
|
Config: configs/danet/danet_r50-d8_4xb2-80k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb2-80k_cityscapes-769x769
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.47
|
|
mIoU(ms+flip): 82.02
|
|
Config: configs/danet/danet_r101-d8_4xb2-80k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb4-80k_ade20k-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.66
|
|
mIoU(ms+flip): 42.9
|
|
Config: configs/danet/danet_r50-d8_4xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 11.5
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb4-80k_ade20k-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.64
|
|
mIoU(ms+flip): 45.19
|
|
Config: configs/danet/danet_r101-d8_4xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 15.0
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb4-160k_ade20k-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.45
|
|
mIoU(ms+flip): 43.25
|
|
Config: configs/danet/danet_r50-d8_4xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb4-160k_ade20k-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.17
|
|
mIoU(ms+flip): 45.02
|
|
Config: configs/danet/danet_r101-d8_4xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb4-20k_voc12aug-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 74.45
|
|
mIoU(ms+flip): 75.69
|
|
Config: configs/danet/danet_r50-d8_4xb4-20k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 6.5
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb4-20k_voc12aug-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.02
|
|
mIoU(ms+flip): 77.23
|
|
Config: configs/danet/danet_r101-d8_4xb4-20k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.9
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r50-d8_4xb4-40k_voc12aug-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.37
|
|
mIoU(ms+flip): 77.29
|
|
Config: configs/danet/danet_r50-d8_4xb4-40k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|
|
- Name: danet_r101-d8_4xb4-40k_voc12aug-512x512
|
|
In Collection: DANet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.51
|
|
mIoU(ms+flip): 77.32
|
|
Config: configs/danet/danet_r101-d8_4xb4-40k_voc12aug-512x512.py
|
|
Metadata:
|
|
Training Data: Pascal VOC 2012 + Aug
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- DANet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031.log.json
|
|
Paper:
|
|
Title: Dual Attention Network for Scene Segmentation
|
|
URL: https://arxiv.org/abs/1809.02983
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
|
|
Framework: PyTorch
|