mmsegmentation/configs/_base_/models/ocrnet_r50-d8.py
RainbowSecret df37f801b6 add more results of OCRNet (#20)
* update the HRNet-OCR & add ResNet-101-OCR

* revise the script

* add the results of resnet-101+ocr

* add cascade ocr, aspp ocr

* add comparison table

* move comparison table

* support ocr+decoder

* revise the ocrnet_sep_aspp

* update the results of ocrnet

* update the results of ocrnet

* add sep-ocr-variants

* add bs2x exp of deeplabv3/v3+

* apply sep-conv in ocr module

* update the results

* update the results

* update the results of OCRNet

* update the results of OCRNet

* correct the results

* verify the release branch

* init the release branch

* add more results of ocrnet and ocrnetplus

* resolve the conflicts

* rename OCRNetPlus as OCRNet+

* fix the format

* fix the lint issues

* fix the lint issues

* fix the lint issues

* fix the lint isort issues

* fix the lint yapf issues

* fix the format issues

* remove the changes by the master branch

* remove the changes by the master branch

* remove the changes by the master branch

* remove the changes by the master branch

* remove the changes by the master branch

* add the logs folder to .gitignore

* recover .gitignore

* update readme

* update readme

* reset the cudnn_benchmark

* revise the README of OCRNet

* revise the name

* revise the reference of OCRNet

* revise the Figure of OCRNet+

* update the results of OCR/OCR+

* update the results of OCR/OCR+

* update the results of OCR/OCR+

* fix the format issue

* fix the format issue

* remove the ocr+

* update the results

* update the results

* fix the conflicts

* fix the lint issue

* fix the lint issue

* fix the lint issue

* fix the lint issue

* fix the inconsistency

* add urls to README

* clean the code

* remove the schedule configs

* clean the custom code

* clean up

* remove ocr.png

Co-authored-by: Jiarui XU <xvjiarui0826@gmail.com>
2020-08-14 13:16:27 +08:00

48 lines
1.3 KiB
Python

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='CascadeEncoderDecoder',
num_stages=2,
pretrained='open-mmlab://resnet50_v1c',
backbone=dict(
type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=norm_cfg,
norm_eval=False,
style='pytorch',
contract_dilation=True),
decode_head=[
dict(
type='FCNHead',
in_channels=1024,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
drop_out_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='OCRHead',
in_channels=2048,
in_index=3,
channels=512,
ocr_channels=256,
drop_out_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
])
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')