mmsegmentation/configs/emanet
sennnnn 2aa632ebe7
[Enhancement] Change readme style and Update metafiles. (#895)
* [Enhancement] Change readme style and prepare for metafiles update.

* Update apcnet github repo url.

* add code snippet.

* split code snippet & official repo.

* update md2yml hook.

* Update metafiles.

* Add converted from attribute.

* process conflict.

* Put defualt variable value.

* update bisenet v2 metafile.

* checkout to ubuntu environment.

* pop empty attribute & make task attribute list.

* update readme style

* update readme style

* update metafiles

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-28 16:25:37 +08:00
..
README.md [Enhancement] Change readme style and Update metafiles. (#895) 2021-09-28 16:25:37 +08:00
emanet.yml [Enhancement] Change readme style and Update metafiles. (#895) 2021-09-28 16:25:37 +08:00
emanet_r50-d8_512x1024_80k_cityscapes.py [Feature] Support EMANet (#34) 2020-09-07 13:06:59 +08:00
emanet_r50-d8_769x769_80k_cityscapes.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
emanet_r101-d8_512x1024_80k_cityscapes.py [Feature] Support EMANet (#34) 2020-09-07 13:06:59 +08:00
emanet_r101-d8_769x769_80k_cityscapes.py [Feature] Support EMANet (#34) 2020-09-07 13:06:59 +08:00

README.md

Expectation-Maximization Attention Networks for Semantic Segmentation

Introduction

Official Repo

Code Snippet

EMANet (ICCV'2019)
@inproceedings{li2019expectation,
  title={Expectation-maximization attention networks for semantic segmentation},
  author={Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9167--9176},
  year={2019}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
EMANet R-50-D8 512x1024 80000 5.4 4.58 77.59 79.44 config model | log
EMANet R-101-D8 512x1024 80000 6.2 2.87 79.10 81.21 config model | log
EMANet R-50-D8 769x769 80000 8.9 1.97 79.33 80.49 config model | log
EMANet R-101-D8 769x769 80000 10.1 1.22 79.62 81.00 config model | log