69 lines
2.0 KiB
Python
69 lines
2.0 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
|
|
from mmseg.models.decode_heads import LRASPPHead
|
|
|
|
|
|
def test_lraspp_head():
|
|
with pytest.raises(ValueError):
|
|
# check invalid input_transform
|
|
LRASPPHead(
|
|
in_channels=(4, 4, 123),
|
|
in_index=(0, 1, 2),
|
|
channels=32,
|
|
input_transform='resize_concat',
|
|
dropout_ratio=0.1,
|
|
num_classes=19,
|
|
norm_cfg=dict(type='BN'),
|
|
act_cfg=dict(type='ReLU'),
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
|
|
|
with pytest.raises(AssertionError):
|
|
# check invalid branch_channels
|
|
LRASPPHead(
|
|
in_channels=(4, 4, 123),
|
|
in_index=(0, 1, 2),
|
|
channels=32,
|
|
branch_channels=64,
|
|
input_transform='multiple_select',
|
|
dropout_ratio=0.1,
|
|
num_classes=19,
|
|
norm_cfg=dict(type='BN'),
|
|
act_cfg=dict(type='ReLU'),
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
|
|
|
# test with default settings
|
|
lraspp_head = LRASPPHead(
|
|
in_channels=(4, 4, 123),
|
|
in_index=(0, 1, 2),
|
|
channels=32,
|
|
input_transform='multiple_select',
|
|
dropout_ratio=0.1,
|
|
num_classes=19,
|
|
norm_cfg=dict(type='BN'),
|
|
act_cfg=dict(type='ReLU'),
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
|
inputs = [
|
|
torch.randn(2, 4, 45, 45),
|
|
torch.randn(2, 4, 28, 28),
|
|
torch.randn(2, 123, 14, 14)
|
|
]
|
|
with pytest.raises(RuntimeError):
|
|
# check invalid inputs
|
|
output = lraspp_head(inputs)
|
|
|
|
inputs = [
|
|
torch.randn(2, 4, 111, 111),
|
|
torch.randn(2, 4, 77, 77),
|
|
torch.randn(2, 123, 55, 55)
|
|
]
|
|
output = lraspp_head(inputs)
|
|
assert output.shape == (2, 19, 111, 111)
|