mmsegmentation/configs/resnest/metafile.yml

159 lines
4.8 KiB
YAML

Collections:
- Name: ResNeSt
Metadata:
Training Data:
- Cityscapes
- ADE20K
Models:
- Name: fcn_s101-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (ms/im):
- value: 418.41
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.56
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth
Config: configs/fcn/fcn_s101-d8_512x1024_80k_cityscapes.py
- Name: pspnet_s101-d8_512x1024_80k_cityscapes
In Collection: PSPNet
Metadata:
inference time (ms/im):
- value: 396.83
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.57
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth
Config: configs/pspnet/pspnet_s101-d8_512x1024_80k_cityscapes.py
- Name: deeplabv3_s101-d8_512x1024_80k_cityscapes
In Collection: DeepLabV3
Metadata:
inference time (ms/im):
- value: 531.91
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.67
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth
Config: configs/deeplabv3/deeplabv3_s101-d8_512x1024_80k_cityscapes.py
- Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes
In Collection: DeepLabV3+
Metadata:
inference time (ms/im):
- value: 423.73
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.62
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth
Config: configs/deeplabv3+/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py
- Name: fcn_s101-d8_512x512_160k_ade20k
In Collection: FCN
Metadata:
inference time (ms/im):
- value: 77.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.62
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth
Config: configs/fcn/fcn_s101-d8_512x512_160k_ade20k.py
- Name: pspnet_s101-d8_512x512_160k_ade20k
In Collection: PSPNet
Metadata:
inference time (ms/im):
- value: 76.8
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.44
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth
Config: configs/pspnet/pspnet_s101-d8_512x512_160k_ade20k.py
- Name: deeplabv3_s101-d8_512x512_160k_ade20k
In Collection: DeepLabV3
Metadata:
inference time (ms/im):
- value: 107.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.71
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth
Config: configs/deeplabv3/deeplabv3_s101-d8_512x512_160k_ade20k.py
- Name: deeplabv3plus_s101-d8_512x512_160k_ade20k
In Collection: DeepLabV3+
Metadata:
inference time (ms/im):
- value: 83.61
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.47
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth
Config: configs/deeplabv3+/deeplabv3plus_s101-d8_512x512_160k_ade20k.py