mmsegmentation/configs/sem_fpn/metafile.yml

84 lines
2.3 KiB
YAML

Collections:
- Name: FPN
Metadata:
Training Data:
- Cityscapes
- Pascal VOC 2012 + Aug
- ADE20K
Models:
- Name: fpn_r50_512x1024_80k_cityscapes
In Collection: FPN
Metadata:
inference time (ms/im):
- value: 73.86
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 74.52
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth
Config: configs/fpn/fpn_r50_512x1024_80k_cityscapes.py
- Name: fpn_r101_512x1024_80k_cityscapes
In Collection: FPN
Metadata:
inference time (ms/im):
- value: 97.18
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.80
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth
Config: configs/fpn/fpn_r101_512x1024_80k_cityscapes.py
- Name: fpn_r50_512x512_160k_ade20k
In Collection: FPN
Metadata:
inference time (ms/im):
- value: 17.93
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 37.49
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth
Config: configs/fpn/fpn_r50_512x512_160k_ade20k.py
- Name: fpn_r101_512x512_160k_ade20k
In Collection: FPN
Metadata:
inference time (ms/im):
- value: 24.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.35
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth
Config: configs/fpn/fpn_r101_512x512_160k_ade20k.py