653 lines
35 KiB
Markdown
653 lines
35 KiB
Markdown
## Changelog
|
||
|
||
### V0.23.0 (4/1/2022)
|
||
|
||
**Highlights**
|
||
|
||
- Support BEiT: BERT Pre-Training of Image Transformers
|
||
- Support K-Net: Towards Unified Image Segmentation
|
||
- Add `avg_non_ignore` of CELoss to support average loss over non-ignored elements
|
||
- Support dataset initialization with file client
|
||
|
||
**New Features**
|
||
|
||
- Support BEiT: BERT Pre-Training of Image Transformers ([#1404](https://github.com/open-mmlab/mmsegmentation/pull/1404))
|
||
- Support K-Net: Towards Unified Image Segmentation ([#1289](https://github.com/open-mmlab/mmsegmentation/pull/1289))
|
||
- Support dataset initialization with file client ([#1402](https://github.com/open-mmlab/mmsegmentation/pull/1402))
|
||
- Add class name function for STARE datasets ([#1376](https://github.com/open-mmlab/mmsegmentation/pull/1376))
|
||
- Support different seeds on different ranks when distributed training ([#1362](https://github.com/open-mmlab/mmsegmentation/pull/1362))
|
||
- Add `nlc2nchw2nlc` and `nchw2nlc2nchw` to simplify tensor with different dimension operation ([#1249](https://github.com/open-mmlab/mmsegmentation/pull/1249))
|
||
|
||
**Improvements**
|
||
|
||
- Synchronize random seed for distributed sampler ([#1411](https://github.com/open-mmlab/mmsegmentation/pull/1411))
|
||
- Add script and documentation for multi-machine distributed training ([#1383](https://github.com/open-mmlab/mmsegmentation/pull/1383))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Add `avg_non_ignore` of CELoss to support average loss over non-ignored elements ([#1409](https://github.com/open-mmlab/mmsegmentation/pull/1409))
|
||
- Fix some wrong URLs of models or logs in `./configs` ([#1336](https://github.com/open-mmlab/mmsegmentation/pull/1433))
|
||
- Add title and color theme arguments to plot function in `tools/confusion_matrix.py` ([#1401](https://github.com/open-mmlab/mmsegmentation/pull/1401))
|
||
- Fix outdated link in Colab demo ([#1392](https://github.com/open-mmlab/mmsegmentation/pull/1392))
|
||
- Fix typos ([#1424](https://github.com/open-mmlab/mmsegmentation/pull/1424), [#1405](https://github.com/open-mmlab/mmsegmentation/pull/1405), [#1371](https://github.com/open-mmlab/mmsegmentation/pull/1371), [#1366](https://github.com/open-mmlab/mmsegmentation/pull/1366), [#1363](https://github.com/open-mmlab/mmsegmentation/pull/1363))
|
||
|
||
**Documentation**
|
||
|
||
- Add FAQ document ([#1420](https://github.com/open-mmlab/mmsegmentation/pull/1420))
|
||
- Fix the config name style description in official docs([#1414](https://github.com/open-mmlab/mmsegmentation/pull/1414))
|
||
|
||
**Contributors**
|
||
|
||
* @kinglintianxia made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1371
|
||
* @CCODING04 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1376
|
||
* @mob5566 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1401
|
||
* @xiongnemo made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1392
|
||
* @Xiangxu-0103 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1405
|
||
|
||
### V0.22.1 (3/9/2022)
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix the ZeroDivisionError that all pixels in one image is ignored. ([#1336](https://github.com/open-mmlab/mmsegmentation/pull/1336))
|
||
|
||
**Improvements**
|
||
|
||
- Provide URLs of STDC, Segmenter and Twins pretrained models ([#1272](https://github.com/open-mmlab/mmsegmentation/pull/1357))
|
||
|
||
|
||
### V0.22 (3/04/2022)
|
||
|
||
**Highlights**
|
||
|
||
- Support ConvNeXt: A ConvNet for the 2020s. Please use the latest MMClassification (0.21.0) to try it out.
|
||
- Support iSAID aerial Dataset.
|
||
- Officially Support inference on Windows OS.
|
||
|
||
**New Features**
|
||
|
||
- Support ConvNeXt: A ConvNet for the 2020s. ([#1216](https://github.com/open-mmlab/mmsegmentation/pull/1216))
|
||
- Support iSAID aerial Dataset. ([#1115](https://github.com/open-mmlab/mmsegmentation/pull/1115)
|
||
- Generating and plotting confusion matrix. ([#1301](https://github.com/open-mmlab/mmsegmentation/pull/1301))
|
||
|
||
**Improvements**
|
||
|
||
- Refactor 4 decoder heads (ASPP, FCN, PSP, UPer): Split forward function into `_forward_feature` and `cls_seg`. ([#1299](https://github.com/open-mmlab/mmsegmentation/pull/1299))
|
||
- Add `min_size` arg in `Resize` to keep the shape after resize bigger than slide window. ([#1318](https://github.com/open-mmlab/mmsegmentation/pull/1318))
|
||
- Revise pre-commit-hooks. ([#1315](https://github.com/open-mmlab/mmsegmentation/pull/1315))
|
||
- Add win-ci. ([#1296](https://github.com/open-mmlab/mmsegmentation/pull/1296))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix `mlp_ratio` type in Swin Transformer. ([#1274](https://github.com/open-mmlab/mmsegmentation/pull/1274))
|
||
- Fix path errors in `./demo` . ([#1269](https://github.com/open-mmlab/mmsegmentation/pull/1269))
|
||
- Fix bug in conversion of potsdam. ([#1279](https://github.com/open-mmlab/mmsegmentation/pull/1279))
|
||
- Make accuracy take into account `ignore_index`. ([#1259](https://github.com/open-mmlab/mmsegmentation/pull/1259))
|
||
- Add Pytorch HardSwish assertion in unit test. ([#1294](https://github.com/open-mmlab/mmsegmentation/pull/1294))
|
||
- Fix wrong palette value in vaihingen. ([#1292](https://github.com/open-mmlab/mmsegmentation/pull/1292))
|
||
- Fix the bug that SETR cannot load pretrain. ([#1293](https://github.com/open-mmlab/mmsegmentation/pull/1293))
|
||
- Update correct `In Collection` in metafile of each configs. ([#1239](https://github.com/open-mmlab/mmsegmentation/pull/1239))
|
||
- Upload completed STDC models. ([#1332](https://github.com/open-mmlab/mmsegmentation/pull/1332))
|
||
- Fix `DNLHead` exports onnx inference difference type Cast error. ([#1161](https://github.com/open-mmlab/mmsegmentation/pull/1332))
|
||
|
||
**Contributors**
|
||
|
||
- @JiaYanhao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1269
|
||
- @andife made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1281
|
||
- @SBCV made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1279
|
||
- @HJoonKwon made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1259
|
||
- @Tsingularity made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1290
|
||
- @Waterman0524 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1115
|
||
- @MeowZheng made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1315
|
||
- @linfangjian01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1318
|
||
|
||
### V0.21.1 (2/9/2022)
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix typos in docs. ([#1263](https://github.com/open-mmlab/mmsegmentation/pull/1263))
|
||
- Fix repeating log by `setup_multi_processes`. ([#1267](https://github.com/open-mmlab/mmsegmentation/pull/1267))
|
||
- Upgrade isort in pre-commit hook. ([#1270](https://github.com/open-mmlab/mmsegmentation/pull/1270))
|
||
|
||
**Improvements**
|
||
|
||
- Use MMCV load_state_dict func in ViT/Swin. ([#1272](https://github.com/open-mmlab/mmsegmentation/pull/1272))
|
||
- Add exception for PointRend for support CPU-only. ([#1271](https://github.com/open-mmlab/mmsegmentation/pull/1270))
|
||
|
||
### V0.21 (1/29/2022)
|
||
|
||
**Highlights**
|
||
|
||
- Officially Support CPUs training and inference, please use the latest MMCV (1.4.4) to try it out.
|
||
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021).
|
||
- Support ISPRS Potsdam and Vaihingen Dataset.
|
||
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers`.
|
||
|
||
**New Features**
|
||
|
||
- Support Segmenter: Transformer for Semantic Segmentation (ICCV'2021) ([#955](https://github.com/open-mmlab/mmsegmentation/pull/955))
|
||
- Support ISPRS Potsdam and Vaihingen Dataset ([#1097](https://github.com/open-mmlab/mmsegmentation/pull/1097), [#1171](https://github.com/open-mmlab/mmsegmentation/pull/1171))
|
||
- Add segformer‘s benchmark on cityscapes ([#1155](https://github.com/open-mmlab/mmsegmentation/pull/1155))
|
||
- Add auto resume ([#1172](https://github.com/open-mmlab/mmsegmentation/pull/1172))
|
||
- Add Mosaic transform and `MultiImageMixDataset` class in `dataset_wrappers` ([#1093](https://github.com/open-mmlab/mmsegmentation/pull/1093), [#1105](https://github.com/open-mmlab/mmsegmentation/pull/1105))
|
||
- Add log collector ([#1175](https://github.com/open-mmlab/mmsegmentation/pull/1175))
|
||
|
||
**Improvements**
|
||
|
||
- New-style CPU training and inference ([#1251](https://github.com/open-mmlab/mmsegmentation/pull/1251))
|
||
- Add UNet benchmark with multiple losses supervision ([#1143](https://github.com/open-mmlab/mmsegmentation/pull/1143))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix the model statistics in doc for readthedoc ([#1153](https://github.com/open-mmlab/mmsegmentation/pull/1153))
|
||
- Set random seed for `palette` if not given ([#1152](https://github.com/open-mmlab/mmsegmentation/pull/1152))
|
||
- Add `COCOStuffDataset` in `class_names.py` ([#1222](https://github.com/open-mmlab/mmsegmentation/pull/1222))
|
||
- Fix bug in non-distributed multi-gpu training/testing ([#1247](https://github.com/open-mmlab/mmsegmentation/pull/1247))
|
||
- Delete unnecessary lines of STDCHead ([#1231](https://github.com/open-mmlab/mmsegmentation/pull/1231))
|
||
|
||
**Contributors**
|
||
|
||
- @jbwang1997 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1152
|
||
- @BeaverCC made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1206
|
||
- @Echo-minn made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1214
|
||
- @rstrudel made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/955
|
||
|
||
### V0.20.2 (12/15/2021)
|
||
|
||
**Bug Fixes**
|
||
|
||
- Revise --option to --options to avoid BC-breaking. ([#1140](https://github.com/open-mmlab/mmsegmentation/pull/1140))
|
||
|
||
### V0.20.1 (12/14/2021)
|
||
|
||
**Improvements**
|
||
|
||
- Change options to cfg-options ([#1129](https://github.com/open-mmlab/mmsegmentation/pull/1129))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix `<!-- [ABSTRACT] -->` in metafile. ([#1127](https://github.com/open-mmlab/mmsegmentation/pull/1127))
|
||
- Fix correct `num_classes` of HRNet in `LoveDA` dataset ([#1136](https://github.com/open-mmlab/mmsegmentation/pull/1136))
|
||
|
||
### V0.20 (12/10/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support Twins ([#989](https://github.com/open-mmlab/mmsegmentation/pull/989))
|
||
- Support a real-time segmentation model STDC ([#995](https://github.com/open-mmlab/mmsegmentation/pull/995))
|
||
- Support a widely-used segmentation model in lane detection ERFNet ([#960](https://github.com/open-mmlab/mmsegmentation/pull/960))
|
||
- Support A Remote Sensing Land-Cover Dataset LoveDA ([#1028](https://github.com/open-mmlab/mmsegmentation/pull/1028))
|
||
- Support focal loss ([#1024](https://github.com/open-mmlab/mmsegmentation/pull/1024))
|
||
|
||
**New Features**
|
||
|
||
- Support Twins ([#989](https://github.com/open-mmlab/mmsegmentation/pull/989))
|
||
- Support a real-time segmentation model STDC ([#995](https://github.com/open-mmlab/mmsegmentation/pull/995))
|
||
- Support a widely-used segmentation model in lane detection ERFNet ([#960](https://github.com/open-mmlab/mmsegmentation/pull/960))
|
||
- Add SETR cityscapes benchmark ([#1087](https://github.com/open-mmlab/mmsegmentation/pull/1087))
|
||
- Add BiSeNetV1 COCO-Stuff 164k benchmark ([#1019](https://github.com/open-mmlab/mmsegmentation/pull/1019))
|
||
- Support focal loss ([#1024](https://github.com/open-mmlab/mmsegmentation/pull/1024))
|
||
- Add Cutout transform ([#1022](https://github.com/open-mmlab/mmsegmentation/pull/1022))
|
||
|
||
**Improvements**
|
||
|
||
- Set a random seed when the user does not set a seed ([#1039](https://github.com/open-mmlab/mmsegmentation/pull/1039))
|
||
- Add CircleCI setup ([#1086](https://github.com/open-mmlab/mmsegmentation/pull/1086))
|
||
- Skip CI on ignoring given paths ([#1078](https://github.com/open-mmlab/mmsegmentation/pull/1078))
|
||
- Add abstract and image for every paper ([#1060](https://github.com/open-mmlab/mmsegmentation/pull/1060))
|
||
- Create a symbolic link on windows ([#1090](https://github.com/open-mmlab/mmsegmentation/pull/1090))
|
||
- Support video demo using trained model ([#1014](https://github.com/open-mmlab/mmsegmentation/pull/1014))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix incorrectly loading init_cfg or pretrained models of several transformer models ([#999](https://github.com/open-mmlab/mmsegmentation/pull/999), [#1069](https://github.com/open-mmlab/mmsegmentation/pull/1069), [#1102](https://github.com/open-mmlab/mmsegmentation/pull/1102))
|
||
- Fix EfficientMultiheadAttention in SegFormer ([#1037](https://github.com/open-mmlab/mmsegmentation/pull/1037))
|
||
- Remove `fp16` folder in `configs` ([#1031](https://github.com/open-mmlab/mmsegmentation/pull/1031))
|
||
- Fix several typos in .yml file (Dice Metric [#1041](https://github.com/open-mmlab/mmsegmentation/pull/1041), ADE20K dataset [#1120](https://github.com/open-mmlab/mmsegmentation/pull/1120), Training Memory (GB) [#1083](https://github.com/open-mmlab/mmsegmentation/pull/1083))
|
||
- Fix test error when using `--show-dir` ([#1091](https://github.com/open-mmlab/mmsegmentation/pull/1091))
|
||
- Fix dist training infinite waiting issue ([#1035](https://github.com/open-mmlab/mmsegmentation/pull/1035))
|
||
- Change the upper version of mmcv to 1.5.0 ([#1096](https://github.com/open-mmlab/mmsegmentation/pull/1096))
|
||
- Fix symlink failure on Windows ([#1038](https://github.com/open-mmlab/mmsegmentation/pull/1038))
|
||
- Cancel previous runs that are not completed ([#1118](https://github.com/open-mmlab/mmsegmentation/pull/1118))
|
||
- Unified links of readthedocs in docs ([#1119](https://github.com/open-mmlab/mmsegmentation/pull/1119))
|
||
|
||
**Contributors**
|
||
|
||
- @Junjue-Wang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1028
|
||
- @ddebby made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1066
|
||
- @del-zhenwu made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1078
|
||
- @KangBK0120 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1106
|
||
- @zergzzlun made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1091
|
||
- @fingertap made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1035
|
||
- @irvingzhang0512 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1014
|
||
- @littleSunlxy made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/989
|
||
- @lkm2835
|
||
- @RockeyCoss
|
||
- @MengzhangLI
|
||
- @Junjun2016
|
||
- @xiexinch
|
||
- @xvjiarui
|
||
|
||
### V0.19 (11/02/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998))
|
||
- Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428))
|
||
- Add codespell pre-commit hook ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920))
|
||
- Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972))
|
||
|
||
**New Features**
|
||
|
||
- Support TIMMBackbone wrapper ([#998](https://github.com/open-mmlab/mmsegmentation/pull/998))
|
||
- Support custom hook ([#428](https://github.com/open-mmlab/mmsegmentation/pull/428))
|
||
- Add FastFCN benchmark on ADE20K ([#972](https://github.com/open-mmlab/mmsegmentation/pull/972))
|
||
- Add codespell pre-commit hook and fix typos ([#920](https://github.com/open-mmlab/mmsegmentation/pull/920))
|
||
|
||
**Improvements**
|
||
|
||
- Make inputs & channels smaller in unittests ([#1004](https://github.com/open-mmlab/mmsegmentation/pull/1004))
|
||
- Change `self.loss_decode` back to `dict` in Single Loss situation ([#1002](https://github.com/open-mmlab/mmsegmentation/pull/1002))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix typo in usage example ([#1003](https://github.com/open-mmlab/mmsegmentation/pull/1003))
|
||
- Add contiguous after permutation in ViT ([#992](https://github.com/open-mmlab/mmsegmentation/pull/992))
|
||
- Fix the invalid link ([#985](https://github.com/open-mmlab/mmsegmentation/pull/985))
|
||
- Fix bug in CI with python 3.9 ([#994](https://github.com/open-mmlab/mmsegmentation/pull/994))
|
||
- Fix bug when loading class name form file in custom dataset ([#923](https://github.com/open-mmlab/mmsegmentation/pull/923))
|
||
|
||
**Contributors**
|
||
|
||
- @ShoupingShan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/923
|
||
- @RockeyCoss made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/954
|
||
- @HarborYuan made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/992
|
||
- @lkm2835 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/1003
|
||
- @gszh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/428
|
||
- @VVsssssk
|
||
- @MengzhangLI
|
||
- @Junjun2016
|
||
|
||
### V0.18 (10/07/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
|
||
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
|
||
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
|
||
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
|
||
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
|
||
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
|
||
|
||
**New Features**
|
||
|
||
- Support three real-time segmentation models (ICNet [#884](https://github.com/open-mmlab/mmsegmentation/pull/884), BiSeNetV1 [#851](https://github.com/open-mmlab/mmsegmentation/pull/851), and BiSeNetV2 [#804](https://github.com/open-mmlab/mmsegmentation/pull/804))
|
||
- Support one efficient segmentation model (FastFCN [#885](https://github.com/open-mmlab/mmsegmentation/pull/885))
|
||
- Support one efficient non-local/self-attention based segmentation model (ISANet [#70](https://github.com/open-mmlab/mmsegmentation/pull/70))
|
||
- Support COCO-Stuff 10k and 164k datasets ([#625](https://github.com/open-mmlab/mmsegmentation/pull/625))
|
||
- Support evaluate concated dataset separately ([#833](https://github.com/open-mmlab/mmsegmentation/pull/833))
|
||
|
||
**Improvements**
|
||
|
||
- Support loading GT for evaluation from multi-file backend ([#867](https://github.com/open-mmlab/mmsegmentation/pull/867))
|
||
- Auto-convert SyncBN to BN when training on DP automatly([#772](https://github.com/open-mmlab/mmsegmentation/pull/772))
|
||
- Refactor Swin-Transformer ([#800](https://github.com/open-mmlab/mmsegmentation/pull/800))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Update mmcv installation in dockerfile ([#860](https://github.com/open-mmlab/mmsegmentation/pull/860))
|
||
- Fix number of iteration bug when resuming checkpoint in distributed train ([#866](https://github.com/open-mmlab/mmsegmentation/pull/866))
|
||
- Fix parsing parse in val_step ([#906](https://github.com/open-mmlab/mmsegmentation/pull/906))
|
||
|
||
### V0.17 (09/01/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support SegFormer
|
||
- Support DPT
|
||
- Support Dark Zurich and Nighttime Driving datasets
|
||
- Support progressive evaluation
|
||
|
||
**New Features**
|
||
|
||
- Support SegFormer ([#599](https://github.com/open-mmlab/mmsegmentation/pull/599))
|
||
- Support DPT ([#605](https://github.com/open-mmlab/mmsegmentation/pull/605))
|
||
- Support Dark Zurich and Nighttime Driving datasets ([#815](https://github.com/open-mmlab/mmsegmentation/pull/815))
|
||
- Support progressive evaluation ([#709](https://github.com/open-mmlab/mmsegmentation/pull/709))
|
||
|
||
**Improvements**
|
||
|
||
- Add multiscale_output interface and unittests for HRNet ([#830](https://github.com/open-mmlab/mmsegmentation/pull/830))
|
||
- Support inherit cityscapes dataset ([#750](https://github.com/open-mmlab/mmsegmentation/pull/750))
|
||
- Fix some typos in README.md ([#824](https://github.com/open-mmlab/mmsegmentation/pull/824))
|
||
- Delete convert function and add instruction to ViT/Swin README.md ([#791](https://github.com/open-mmlab/mmsegmentation/pull/791))
|
||
- Add vit/swin/mit convert weight scripts ([#783](https://github.com/open-mmlab/mmsegmentation/pull/783))
|
||
- Add copyright files ([#796](https://github.com/open-mmlab/mmsegmentation/pull/796))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix invalid checkpoint link in inference_demo.ipynb ([#814](https://github.com/open-mmlab/mmsegmentation/pull/814))
|
||
- Ensure that items in dataset have the same order across multi machine ([#780](https://github.com/open-mmlab/mmsegmentation/pull/780))
|
||
- Fix the log error ([#766](https://github.com/open-mmlab/mmsegmentation/pull/766))
|
||
|
||
### V0.16 (08/04/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support PyTorch 1.9
|
||
- Support SegFormer backbone MiT
|
||
- Support md2yml pre-commit hook
|
||
- Support frozen stage for HRNet
|
||
|
||
**New Features**
|
||
|
||
- Support SegFormer backbone MiT ([#594](https://github.com/open-mmlab/mmsegmentation/pull/594))
|
||
- Support md2yml pre-commit hook ([#732](https://github.com/open-mmlab/mmsegmentation/pull/732))
|
||
- Support mim ([#717](https://github.com/open-mmlab/mmsegmentation/pull/717))
|
||
- Add mmseg2torchserve tool ([#552](https://github.com/open-mmlab/mmsegmentation/pull/552))
|
||
|
||
**Improvements**
|
||
|
||
- Support hrnet frozen stage ([#743](https://github.com/open-mmlab/mmsegmentation/pull/743))
|
||
- Add template of reimplementation questions ([#741](https://github.com/open-mmlab/mmsegmentation/pull/741))
|
||
- Output pdf and epub formats for readthedocs ([#742](https://github.com/open-mmlab/mmsegmentation/pull/742))
|
||
- Refine the docstring of ResNet ([#723](https://github.com/open-mmlab/mmsegmentation/pull/723))
|
||
- Replace interpolate with resize ([#731](https://github.com/open-mmlab/mmsegmentation/pull/731))
|
||
- Update resource limit ([#700](https://github.com/open-mmlab/mmsegmentation/pull/700))
|
||
- Update config.md ([#678](https://github.com/open-mmlab/mmsegmentation/pull/678))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix ATTENTION registry ([#729](https://github.com/open-mmlab/mmsegmentation/pull/729))
|
||
- Fix analyze log script ([#716](https://github.com/open-mmlab/mmsegmentation/pull/716))
|
||
- Fix doc api display ([#725](https://github.com/open-mmlab/mmsegmentation/pull/725))
|
||
- Fix patch_embed and pos_embed mismatch error ([#685](https://github.com/open-mmlab/mmsegmentation/pull/685))
|
||
- Fix efficient test for multi-node ([#707](https://github.com/open-mmlab/mmsegmentation/pull/707))
|
||
- Fix init_cfg in resnet backbone ([#697](https://github.com/open-mmlab/mmsegmentation/pull/697))
|
||
- Fix efficient test bug ([#702](https://github.com/open-mmlab/mmsegmentation/pull/702))
|
||
- Fix url error in config docs ([#680](https://github.com/open-mmlab/mmsegmentation/pull/680))
|
||
- Fix mmcv installation ([#676](https://github.com/open-mmlab/mmsegmentation/pull/676))
|
||
- Fix torch version ([#670](https://github.com/open-mmlab/mmsegmentation/pull/670))
|
||
|
||
**Contributors**
|
||
|
||
@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo
|
||
|
||
### V0.15 (07/04/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support ViT, SETR, and Swin-Transformer
|
||
- Add Chinese documentation
|
||
- Unified parameter initialization
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix typo and links ([#608](https://github.com/open-mmlab/mmsegmentation/pull/608))
|
||
- Fix Dockerfile ([#607](https://github.com/open-mmlab/mmsegmentation/pull/607))
|
||
- Fix ViT init ([#609](https://github.com/open-mmlab/mmsegmentation/pull/609))
|
||
- Fix mmcv version compatible table ([#658](https://github.com/open-mmlab/mmsegmentation/pull/658))
|
||
- Fix model links of DMNEt ([#660](https://github.com/open-mmlab/mmsegmentation/pull/660))
|
||
|
||
**New Features**
|
||
|
||
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
|
||
- Support SETR ([#531](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/635))
|
||
- Add config and models for ViT backbone with UperHead ([#520](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/520))
|
||
- Support Swin-Transformer ([#511](https://github.com/open-mmlab/mmsegmentation/pull/511))
|
||
- Add higher accuracy FastSCNN ([#606](https://github.com/open-mmlab/mmsegmentation/pull/606))
|
||
- Add Chinese documentation ([#666](https://github.com/open-mmlab/mmsegmentation/pull/666))
|
||
|
||
**Improvements**
|
||
|
||
- Unified parameter initialization ([#567](https://github.com/open-mmlab/mmsegmentation/pull/567))
|
||
- Separate CUDA and CPU in github action CI ([#602](https://github.com/open-mmlab/mmsegmentation/pull/602))
|
||
- Support persistent dataloader worker ([#646](https://github.com/open-mmlab/mmsegmentation/pull/646))
|
||
- Update meta file fields ([#661](https://github.com/open-mmlab/mmsegmentation/pull/661), [#664](https://github.com/open-mmlab/mmsegmentation/pull/664))
|
||
|
||
### V0.14 (06/02/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support ONNX to TensorRT
|
||
- Support MIM
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fix ONNX to TensorRT verify ([#547](https://github.com/open-mmlab/mmsegmentation/pull/547))
|
||
- Fix save best for EvalHook ([#575](https://github.com/open-mmlab/mmsegmentation/pull/575))
|
||
|
||
**New Features**
|
||
|
||
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
|
||
- Support ONNX to TensorRT ([#542](https://github.com/open-mmlab/mmsegmentation/pull/542))
|
||
- Support output results for ADE20k ([#544](https://github.com/open-mmlab/mmsegmentation/pull/544))
|
||
- Support MIM ([#549](https://github.com/open-mmlab/mmsegmentation/pull/549))
|
||
|
||
**Improvements**
|
||
|
||
- Add option for ViT output shape ([#530](https://github.com/open-mmlab/mmsegmentation/pull/530))
|
||
- Infer batch size using len(result) ([#532](https://github.com/open-mmlab/mmsegmentation/pull/532))
|
||
- Add compatible table between MMSeg and MMCV ([#558](https://github.com/open-mmlab/mmsegmentation/pull/558))
|
||
|
||
### V0.13 (05/05/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support Pascal Context Class-59 dataset.
|
||
- Support Visual Transformer Backbone.
|
||
- Support mFscore metric.
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
|
||
- Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471))
|
||
- Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492))
|
||
- Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488))
|
||
- Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497))
|
||
|
||
**New Features**
|
||
|
||
- Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463))
|
||
- Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499))
|
||
- Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459))
|
||
- Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465))
|
||
- Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512))
|
||
- Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509))
|
||
|
||
**Improvements**
|
||
|
||
- Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460))
|
||
- Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
|
||
- Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469))
|
||
- Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495))
|
||
- Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
|
||
- Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
|
||
- Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515))
|
||
- Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498))
|
||
- Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514))
|
||
- Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513))
|
||
- Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505))
|
||
- Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438))
|
||
|
||
### V0.12 (04/03/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support FCN-Dilate 6 model.
|
||
- Support Dice Loss.
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed PhotoMetricDistortion Doc ([#388](https://github.com/open-mmlab/mmsegmentation/pull/388))
|
||
- Fixed install scripts ([#399](https://github.com/open-mmlab/mmsegmentation/pull/399))
|
||
- Fixed Dice Loss multi-class ([#417](https://github.com/open-mmlab/mmsegmentation/pull/417))
|
||
|
||
**New Features**
|
||
|
||
- Support Dice Loss ([#396](https://github.com/open-mmlab/mmsegmentation/pull/396))
|
||
- Add plot logs tool ([#426](https://github.com/open-mmlab/mmsegmentation/pull/426))
|
||
- Add opacity option to show_result ([#425](https://github.com/open-mmlab/mmsegmentation/pull/425))
|
||
- Speed up mIoU metric ([#430](https://github.com/open-mmlab/mmsegmentation/pull/430))
|
||
|
||
**Improvements**
|
||
|
||
- Refactor unittest file structure ([#440](https://github.com/open-mmlab/mmsegmentation/pull/440))
|
||
- Fix typos in the repo ([#449](https://github.com/open-mmlab/mmsegmentation/pull/449))
|
||
- Include class-level metrics in the log ([#445](https://github.com/open-mmlab/mmsegmentation/pull/445))
|
||
|
||
### V0.11 (02/02/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support memory efficient test, add more UNet models.
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334))
|
||
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
|
||
- Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359))
|
||
|
||
**New Features**
|
||
|
||
- Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330))
|
||
- Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324))
|
||
- Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351))
|
||
|
||
**Improvements**
|
||
|
||
- Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341))
|
||
|
||
### V0.10 (01/01/2021)
|
||
|
||
**Highlights**
|
||
|
||
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276))
|
||
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
|
||
|
||
**New Features**
|
||
|
||
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316))
|
||
- Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268))
|
||
- Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315))
|
||
- Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313))
|
||
- Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299))
|
||
|
||
**Improvements**
|
||
|
||
- Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311))
|
||
- Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291))
|
||
|
||
### V0.9 (30/11/2020)
|
||
|
||
**Highlights**
|
||
|
||
- Support 4 medical dataset, UNet and CGNet.
|
||
|
||
**New Features**
|
||
|
||
- Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260))
|
||
- Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227))
|
||
- Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228))
|
||
- Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210))
|
||
- Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263))
|
||
- Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225))
|
||
- Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232))
|
||
- Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229))
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267))
|
||
|
||
### V0.8 (03/11/2020)
|
||
|
||
**Highlights**
|
||
|
||
- Support 4 medical dataset, UNet and CGNet.
|
||
|
||
**New Features**
|
||
|
||
- Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118))
|
||
- Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162))
|
||
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203))
|
||
- Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223))
|
||
|
||
### V0.7 (07/10/2020)
|
||
|
||
**Highlights**
|
||
|
||
- Support Pascal Context dataset and customizing class dataset.
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
|
||
|
||
**New Features**
|
||
|
||
- Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154))
|
||
- Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133))
|
||
- Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71))
|
||
- Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157))
|
||
|
||
**Improvements**
|
||
|
||
- Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150))
|
||
- Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160))
|
||
- Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158))
|
||
- Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137))
|
||
- Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
|
||
|
||
### V0.6 (10/09/2020)
|
||
|
||
**Highlights**
|
||
|
||
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90))
|
||
|
||
**New Features**
|
||
|
||
- Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86))
|
||
- Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34))
|
||
- Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37))
|
||
- Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109))
|
||
- Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94))
|
||
- Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58))
|
||
- Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47))
|
||
- Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12))
|
||
|
||
**Improvements**
|
||
|
||
- Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100))
|
||
- Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75))
|
||
- Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20))
|
||
- Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64))
|
||
- Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55))
|
||
|
||
### v0.5.1 (11/08/2020)
|
||
|
||
**Highlights**
|
||
|
||
- Support FP16 and more generalized OHEM
|
||
|
||
**Bug Fixes**
|
||
|
||
- Fixed Pascal VOC conversion script (#19)
|
||
- Fixed OHEM weight assign bug (#54)
|
||
- Fixed palette type when palette is not given (#27)
|
||
|
||
**New Features**
|
||
|
||
- Support FP16 (#21)
|
||
- Generalized OHEM (#54)
|
||
|
||
**Improvements**
|
||
|
||
- Add load-from flag (#33)
|
||
- Fixed training tricks doc about different learning rates of model (#26)
|