186 lines
5.9 KiB
Python
186 lines
5.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
import torch
|
|
import torch._C
|
|
import torch.serialization
|
|
from mmcv.runner import load_checkpoint
|
|
from torch import nn
|
|
|
|
from mmseg.models import build_segmentor
|
|
|
|
torch.manual_seed(3)
|
|
|
|
|
|
def digit_version(version_str):
|
|
digit_version = []
|
|
for x in version_str.split('.'):
|
|
if x.isdigit():
|
|
digit_version.append(int(x))
|
|
elif x.find('rc') != -1:
|
|
patch_version = x.split('rc')
|
|
digit_version.append(int(patch_version[0]) - 1)
|
|
digit_version.append(int(patch_version[1]))
|
|
return digit_version
|
|
|
|
|
|
def check_torch_version():
|
|
torch_minimum_version = '1.8.0'
|
|
torch_version = digit_version(torch.__version__)
|
|
|
|
assert (torch_version >= digit_version(torch_minimum_version)), \
|
|
f'Torch=={torch.__version__} is not support for converting to ' \
|
|
f'torchscript. Please install pytorch>={torch_minimum_version}.'
|
|
|
|
|
|
def _convert_batchnorm(module):
|
|
module_output = module
|
|
if isinstance(module, torch.nn.SyncBatchNorm):
|
|
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
|
|
module.momentum, module.affine,
|
|
module.track_running_stats)
|
|
if module.affine:
|
|
module_output.weight.data = module.weight.data.clone().detach()
|
|
module_output.bias.data = module.bias.data.clone().detach()
|
|
# keep requires_grad unchanged
|
|
module_output.weight.requires_grad = module.weight.requires_grad
|
|
module_output.bias.requires_grad = module.bias.requires_grad
|
|
module_output.running_mean = module.running_mean
|
|
module_output.running_var = module.running_var
|
|
module_output.num_batches_tracked = module.num_batches_tracked
|
|
for name, child in module.named_children():
|
|
module_output.add_module(name, _convert_batchnorm(child))
|
|
del module
|
|
return module_output
|
|
|
|
|
|
def _demo_mm_inputs(input_shape, num_classes):
|
|
"""Create a superset of inputs needed to run test or train batches.
|
|
|
|
Args:
|
|
input_shape (tuple):
|
|
input batch dimensions
|
|
num_classes (int):
|
|
number of semantic classes
|
|
"""
|
|
(N, C, H, W) = input_shape
|
|
rng = np.random.RandomState(0)
|
|
imgs = rng.rand(*input_shape)
|
|
segs = rng.randint(
|
|
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
|
|
img_metas = [{
|
|
'img_shape': (H, W, C),
|
|
'ori_shape': (H, W, C),
|
|
'pad_shape': (H, W, C),
|
|
'filename': '<demo>.png',
|
|
'scale_factor': 1.0,
|
|
'flip': False,
|
|
} for _ in range(N)]
|
|
mm_inputs = {
|
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
|
|
'img_metas': img_metas,
|
|
'gt_semantic_seg': torch.LongTensor(segs)
|
|
}
|
|
return mm_inputs
|
|
|
|
|
|
def pytorch2libtorch(model,
|
|
input_shape,
|
|
show=False,
|
|
output_file='tmp.pt',
|
|
verify=False):
|
|
"""Export Pytorch model to TorchScript model and verify the outputs are
|
|
same between Pytorch and TorchScript.
|
|
|
|
Args:
|
|
model (nn.Module): Pytorch model we want to export.
|
|
input_shape (tuple): Use this input shape to construct
|
|
the corresponding dummy input and execute the model.
|
|
show (bool): Whether print the computation graph. Default: False.
|
|
output_file (string): The path to where we store the
|
|
output TorchScript model. Default: `tmp.pt`.
|
|
verify (bool): Whether compare the outputs between
|
|
Pytorch and TorchScript. Default: False.
|
|
"""
|
|
if isinstance(model.decode_head, nn.ModuleList):
|
|
num_classes = model.decode_head[-1].num_classes
|
|
else:
|
|
num_classes = model.decode_head.num_classes
|
|
|
|
mm_inputs = _demo_mm_inputs(input_shape, num_classes)
|
|
|
|
imgs = mm_inputs.pop('imgs')
|
|
|
|
# replace the original forword with forward_dummy
|
|
model.forward = model.forward_dummy
|
|
model.eval()
|
|
traced_model = torch.jit.trace(
|
|
model,
|
|
example_inputs=imgs,
|
|
check_trace=verify,
|
|
)
|
|
|
|
if show:
|
|
print(traced_model.graph)
|
|
|
|
traced_model.save(output_file)
|
|
print('Successfully exported TorchScript model: {}'.format(output_file))
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert MMSeg to TorchScript')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('--checkpoint', help='checkpoint file', default=None)
|
|
parser.add_argument(
|
|
'--show', action='store_true', help='show TorchScript graph')
|
|
parser.add_argument(
|
|
'--verify', action='store_true', help='verify the TorchScript model')
|
|
parser.add_argument('--output-file', type=str, default='tmp.pt')
|
|
parser.add_argument(
|
|
'--shape',
|
|
type=int,
|
|
nargs='+',
|
|
default=[512, 512],
|
|
help='input image size (height, width)')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
check_torch_version()
|
|
|
|
if len(args.shape) == 1:
|
|
input_shape = (1, 3, args.shape[0], args.shape[0])
|
|
elif len(args.shape) == 2:
|
|
input_shape = (
|
|
1,
|
|
3,
|
|
) + tuple(args.shape)
|
|
else:
|
|
raise ValueError('invalid input shape')
|
|
|
|
cfg = mmcv.Config.fromfile(args.config)
|
|
cfg.model.pretrained = None
|
|
|
|
# build the model and load checkpoint
|
|
cfg.model.train_cfg = None
|
|
segmentor = build_segmentor(
|
|
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
|
|
# convert SyncBN to BN
|
|
segmentor = _convert_batchnorm(segmentor)
|
|
|
|
if args.checkpoint:
|
|
load_checkpoint(segmentor, args.checkpoint, map_location='cpu')
|
|
|
|
# convert the PyTorch model to LibTorch model
|
|
pytorch2libtorch(
|
|
segmentor,
|
|
input_shape,
|
|
show=args.show,
|
|
output_file=args.output_file,
|
|
verify=args.verify)
|