201 lines
6.3 KiB
Python
201 lines
6.3 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import math
|
|
import os.path as osp
|
|
|
|
import pytest
|
|
from torch.utils.data import (DistributedSampler, RandomSampler,
|
|
SequentialSampler)
|
|
|
|
from mmseg.datasets import (DATASETS, ConcatDataset, MultiImageMixDataset,
|
|
build_dataloader, build_dataset)
|
|
|
|
|
|
@DATASETS.register_module()
|
|
class ToyDataset(object):
|
|
|
|
def __init__(self, cnt=0):
|
|
self.cnt = cnt
|
|
|
|
def __item__(self, idx):
|
|
return idx
|
|
|
|
def __len__(self):
|
|
return 100
|
|
|
|
|
|
def test_build_dataset():
|
|
cfg = dict(type='ToyDataset')
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, ToyDataset)
|
|
assert dataset.cnt == 0
|
|
dataset = build_dataset(cfg, default_args=dict(cnt=1))
|
|
assert isinstance(dataset, ToyDataset)
|
|
assert dataset.cnt == 1
|
|
|
|
data_root = osp.join(osp.dirname(__file__), '../data/pseudo_dataset')
|
|
img_dir = 'imgs/'
|
|
ann_dir = 'gts/'
|
|
|
|
# We use same dir twice for simplicity
|
|
# with ann_dir
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=[img_dir, img_dir],
|
|
ann_dir=[ann_dir, ann_dir])
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, ConcatDataset)
|
|
assert len(dataset) == 10
|
|
|
|
cfg = dict(type='MultiImageMixDataset', dataset=cfg, pipeline=[])
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, MultiImageMixDataset)
|
|
assert len(dataset) == 10
|
|
|
|
# with ann_dir, split
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=img_dir,
|
|
ann_dir=ann_dir,
|
|
split=['splits/train.txt', 'splits/val.txt'])
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, ConcatDataset)
|
|
assert len(dataset) == 5
|
|
|
|
# with ann_dir, split
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=img_dir,
|
|
ann_dir=[ann_dir, ann_dir],
|
|
split=['splits/train.txt', 'splits/val.txt'])
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, ConcatDataset)
|
|
assert len(dataset) == 5
|
|
|
|
# test mode
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=[img_dir, img_dir],
|
|
test_mode=True,
|
|
classes=('pseudo_class', ))
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, ConcatDataset)
|
|
assert len(dataset) == 10
|
|
|
|
# test mode with splits
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=[img_dir, img_dir],
|
|
split=['splits/val.txt', 'splits/val.txt'],
|
|
test_mode=True,
|
|
classes=('pseudo_class', ))
|
|
dataset = build_dataset(cfg)
|
|
assert isinstance(dataset, ConcatDataset)
|
|
assert len(dataset) == 2
|
|
|
|
# len(ann_dir) should be zero or len(img_dir) when len(img_dir) > 1
|
|
with pytest.raises(AssertionError):
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=[img_dir, img_dir],
|
|
ann_dir=[ann_dir, ann_dir, ann_dir])
|
|
build_dataset(cfg)
|
|
|
|
# len(splits) should be zero or len(img_dir) when len(img_dir) > 1
|
|
with pytest.raises(AssertionError):
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=[img_dir, img_dir],
|
|
split=['splits/val.txt', 'splits/val.txt', 'splits/val.txt'])
|
|
build_dataset(cfg)
|
|
|
|
# len(splits) == len(ann_dir) when only len(img_dir) == 1 and len(
|
|
# ann_dir) > 1
|
|
with pytest.raises(AssertionError):
|
|
cfg = dict(
|
|
type='CustomDataset',
|
|
pipeline=[],
|
|
data_root=data_root,
|
|
img_dir=img_dir,
|
|
ann_dir=[ann_dir, ann_dir],
|
|
split=['splits/val.txt', 'splits/val.txt', 'splits/val.txt'])
|
|
build_dataset(cfg)
|
|
|
|
|
|
def test_build_dataloader():
|
|
dataset = ToyDataset()
|
|
samples_per_gpu = 3
|
|
# dist=True, shuffle=True, 1GPU
|
|
dataloader = build_dataloader(
|
|
dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=2)
|
|
assert dataloader.batch_size == samples_per_gpu
|
|
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
|
|
assert isinstance(dataloader.sampler, DistributedSampler)
|
|
assert dataloader.sampler.shuffle
|
|
|
|
# dist=True, shuffle=False, 1GPU
|
|
dataloader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=samples_per_gpu,
|
|
workers_per_gpu=2,
|
|
shuffle=False)
|
|
assert dataloader.batch_size == samples_per_gpu
|
|
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
|
|
assert isinstance(dataloader.sampler, DistributedSampler)
|
|
assert not dataloader.sampler.shuffle
|
|
|
|
# dist=True, shuffle=True, 8GPU
|
|
dataloader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=samples_per_gpu,
|
|
workers_per_gpu=2,
|
|
num_gpus=8)
|
|
assert dataloader.batch_size == samples_per_gpu
|
|
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
|
|
assert dataloader.num_workers == 2
|
|
|
|
# dist=False, shuffle=True, 1GPU
|
|
dataloader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=samples_per_gpu,
|
|
workers_per_gpu=2,
|
|
dist=False)
|
|
assert dataloader.batch_size == samples_per_gpu
|
|
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
|
|
assert isinstance(dataloader.sampler, RandomSampler)
|
|
assert dataloader.num_workers == 2
|
|
|
|
# dist=False, shuffle=False, 1GPU
|
|
dataloader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=3,
|
|
workers_per_gpu=2,
|
|
shuffle=False,
|
|
dist=False)
|
|
assert dataloader.batch_size == samples_per_gpu
|
|
assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
|
|
assert isinstance(dataloader.sampler, SequentialSampler)
|
|
assert dataloader.num_workers == 2
|
|
|
|
# dist=False, shuffle=True, 8GPU
|
|
dataloader = build_dataloader(
|
|
dataset, samples_per_gpu=3, workers_per_gpu=2, num_gpus=8, dist=False)
|
|
assert dataloader.batch_size == samples_per_gpu * 8
|
|
assert len(dataloader) == int(
|
|
math.ceil(len(dataset) / samples_per_gpu / 8))
|
|
assert isinstance(dataloader.sampler, RandomSampler)
|
|
assert dataloader.num_workers == 16
|