mmsegmentation/tests/test_models/test_backbones/test_timm_backbone.py

134 lines
4.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.backbones import TIMMBackbone
from .utils import check_norm_state
def test_timm_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = TIMMBackbone()
model.init_weights(pretrained=0)
# Test different norm_layer, can be: 'SyncBN', 'BN2d', 'GN', 'LN', 'IN'
# Test resnet18 from timm, norm_layer='BN2d'
model = TIMMBackbone(
model_name='resnet18',
features_only=True,
pretrained=False,
output_stride=32,
norm_layer='BN2d')
# Test resnet18 from timm, norm_layer='SyncBN'
model = TIMMBackbone(
model_name='resnet18',
features_only=True,
pretrained=False,
output_stride=32,
norm_layer='SyncBN')
# Test resnet18 from timm, features_only=True, output_stride=32
model = TIMMBackbone(
model_name='resnet18',
features_only=True,
pretrained=False,
output_stride=32)
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
imgs = torch.randn(1, 3, 224, 224)
feats = model(imgs)
feats = [feat.shape for feat in feats]
assert len(feats) == 5
assert feats[0] == torch.Size((1, 64, 112, 112))
assert feats[1] == torch.Size((1, 64, 56, 56))
assert feats[2] == torch.Size((1, 128, 28, 28))
assert feats[3] == torch.Size((1, 256, 14, 14))
assert feats[4] == torch.Size((1, 512, 7, 7))
# Test resnet18 from timm, features_only=True, output_stride=16
model = TIMMBackbone(
model_name='resnet18',
features_only=True,
pretrained=False,
output_stride=16)
imgs = torch.randn(1, 3, 224, 224)
feats = model(imgs)
feats = [feat.shape for feat in feats]
assert len(feats) == 5
assert feats[0] == torch.Size((1, 64, 112, 112))
assert feats[1] == torch.Size((1, 64, 56, 56))
assert feats[2] == torch.Size((1, 128, 28, 28))
assert feats[3] == torch.Size((1, 256, 14, 14))
assert feats[4] == torch.Size((1, 512, 14, 14))
# Test resnet18 from timm, features_only=True, output_stride=8
model = TIMMBackbone(
model_name='resnet18',
features_only=True,
pretrained=False,
output_stride=8)
imgs = torch.randn(1, 3, 224, 224)
feats = model(imgs)
feats = [feat.shape for feat in feats]
assert len(feats) == 5
assert feats[0] == torch.Size((1, 64, 112, 112))
assert feats[1] == torch.Size((1, 64, 56, 56))
assert feats[2] == torch.Size((1, 128, 28, 28))
assert feats[3] == torch.Size((1, 256, 28, 28))
assert feats[4] == torch.Size((1, 512, 28, 28))
# Test efficientnet_b1 with pretrained weights
model = TIMMBackbone(model_name='efficientnet_b1', pretrained=True)
# Test resnetv2_50x1_bitm from timm, features_only=True, output_stride=8
model = TIMMBackbone(
model_name='resnetv2_50x1_bitm',
features_only=True,
pretrained=False,
output_stride=8)
imgs = torch.randn(1, 3, 8, 8)
feats = model(imgs)
feats = [feat.shape for feat in feats]
assert len(feats) == 5
assert feats[0] == torch.Size((1, 64, 4, 4))
assert feats[1] == torch.Size((1, 256, 2, 2))
assert feats[2] == torch.Size((1, 512, 1, 1))
assert feats[3] == torch.Size((1, 1024, 1, 1))
assert feats[4] == torch.Size((1, 2048, 1, 1))
# Test resnetv2_50x3_bitm from timm, features_only=True, output_stride=8
model = TIMMBackbone(
model_name='resnetv2_50x3_bitm',
features_only=True,
pretrained=False,
output_stride=8)
imgs = torch.randn(1, 3, 8, 8)
feats = model(imgs)
feats = [feat.shape for feat in feats]
assert len(feats) == 5
assert feats[0] == torch.Size((1, 192, 4, 4))
assert feats[1] == torch.Size((1, 768, 2, 2))
assert feats[2] == torch.Size((1, 1536, 1, 1))
assert feats[3] == torch.Size((1, 3072, 1, 1))
assert feats[4] == torch.Size((1, 6144, 1, 1))
# Test resnetv2_101x1_bitm from timm, features_only=True, output_stride=8
model = TIMMBackbone(
model_name='resnetv2_101x1_bitm',
features_only=True,
pretrained=False,
output_stride=8)
imgs = torch.randn(1, 3, 8, 8)
feats = model(imgs)
feats = [feat.shape for feat in feats]
assert len(feats) == 5
assert feats[0] == torch.Size((1, 64, 4, 4))
assert feats[1] == torch.Size((1, 256, 2, 2))
assert feats[2] == torch.Size((1, 512, 1, 1))
assert feats[3] == torch.Size((1, 1024, 1, 1))
assert feats[4] == torch.Size((1, 2048, 1, 1))