Shanghua Gao 6cb7fe0c51
Imagenet-s dataset for large-scale semantic segmentation (#2480)
## Motivation

Based on the ImageNet dataset, we propose the ImageNet-S dataset has 1.2 million training images and 50k high-quality semantic segmentation annotations to support unsupervised/semi-supervised semantic segmentation on the ImageNet dataset.

paper:
Large-scale Unsupervised Semantic Segmentation (TPAMI 2022)
[Paper link](https://arxiv.org/abs/2106.03149)

## Modification

1. Support imagenet-s dataset and its' configuration
2. Add the dataset preparation in the documentation
2023-01-16 16:42:19 +08:00

62 lines
1.9 KiB
Python

# dataset settings
dataset_type = 'ImageNetSDataset'
subset = 919
data_root = 'data/ImageNetS/ImageNetS919'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (224, 224)
train_pipeline = [
dict(type='LoadImageNetSImageFromFile', downsample_large_image=True),
dict(type='LoadImageNetSAnnotations', reduce_zero_label=False),
dict(type='Resize', img_scale=(1024, 256), ratio_range=(0.5, 2.0)),
dict(
type='RandomCrop',
crop_size=crop_size,
cat_max_ratio=0.75,
ignore_index=1000),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=1000),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageNetSImageFromFile', downsample_large_image=True),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 256),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
subset=subset,
data_root=data_root,
img_dir='train-semi',
ann_dir='train-semi-segmentation',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
subset=subset,
data_root=data_root,
img_dir='validation',
ann_dir='validation-segmentation',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
subset=subset,
data_root=data_root,
img_dir='validation',
ann_dir='validation-segmentation',
pipeline=test_pipeline))