Shanghua Gao 6cb7fe0c51
Imagenet-s dataset for large-scale semantic segmentation (#2480)
## Motivation

Based on the ImageNet dataset, we propose the ImageNet-S dataset has 1.2 million training images and 50k high-quality semantic segmentation annotations to support unsupervised/semi-supervised semantic segmentation on the ImageNet dataset.

paper:
Large-scale Unsupervised Semantic Segmentation (TPAMI 2022)
[Paper link](https://arxiv.org/abs/2106.03149)

## Modification

1. Support imagenet-s dataset and its' configuration
2. Add the dataset preparation in the documentation
2023-01-16 16:42:19 +08:00

36 lines
1.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from .ade import ADE20KDataset
from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset
from .chase_db1 import ChaseDB1Dataset
from .cityscapes import CityscapesDataset
from .coco_stuff import COCOStuffDataset
from .custom import CustomDataset
from .dark_zurich import DarkZurichDataset
from .dataset_wrappers import (ConcatDataset, MultiImageMixDataset,
RepeatDataset)
from .drive import DRIVEDataset
from .face import FaceOccludedDataset
from .hrf import HRFDataset
from .imagenets import (ImageNetSDataset, LoadImageNetSAnnotations,
LoadImageNetSImageFromFile)
from .isaid import iSAIDDataset
from .isprs import ISPRSDataset
from .loveda import LoveDADataset
from .night_driving import NightDrivingDataset
from .pascal_context import PascalContextDataset, PascalContextDataset59
from .potsdam import PotsdamDataset
from .stare import STAREDataset
from .voc import PascalVOCDataset
__all__ = [
'CustomDataset', 'build_dataloader', 'ConcatDataset', 'RepeatDataset',
'DATASETS', 'build_dataset', 'PIPELINES', 'CityscapesDataset',
'PascalVOCDataset', 'ADE20KDataset', 'PascalContextDataset',
'PascalContextDataset59', 'ChaseDB1Dataset', 'DRIVEDataset', 'HRFDataset',
'STAREDataset', 'DarkZurichDataset', 'NightDrivingDataset',
'COCOStuffDataset', 'LoveDADataset', 'MultiImageMixDataset',
'iSAIDDataset', 'ISPRSDataset', 'PotsdamDataset', 'FaceOccludedDataset',
'ImageNetSDataset', 'LoadImageNetSAnnotations',
'LoadImageNetSImageFromFile'
]