553 lines
18 KiB
YAML
553 lines
18 KiB
YAML
Collections:
|
|
- Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
- Pascal Context
|
|
- Pascal Context 59
|
|
Name: deeplabv3
|
|
Models:
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 389.11
|
|
lr schd: 40000
|
|
memory (GB): 6.1
|
|
Name: deeplabv3_r50-d8_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.09
|
|
mIoU(ms+flip): 80.45
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes/deeplabv3_r50-d8_512x1024_40k_cityscapes_20200605_022449-acadc2f8.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 520.83
|
|
lr schd: 40000
|
|
memory (GB): 9.6
|
|
Name: deeplabv3_r101-d8_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.12
|
|
mIoU(ms+flip): 79.61
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_40k_cityscapes/deeplabv3_r101-d8_512x1024_40k_cityscapes_20200605_012241-7fd3f799.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
value: 900.9
|
|
lr schd: 40000
|
|
memory (GB): 6.9
|
|
Name: deeplabv3_r50-d8_769x769_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.58
|
|
mIoU(ms+flip): 79.89
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_40k_cityscapes/deeplabv3_r50-d8_769x769_40k_cityscapes_20200606_113723-7eda553c.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
value: 1204.82
|
|
lr schd: 40000
|
|
memory (GB): 10.9
|
|
Name: deeplabv3_r101-d8_769x769_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.27
|
|
mIoU(ms+flip): 80.11
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_40k_cityscapes/deeplabv3_r101-d8_769x769_40k_cityscapes_20200606_113809-c64f889f.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 72.57
|
|
lr schd: 80000
|
|
memory (GB): 1.7
|
|
Name: deeplabv3_r18-d8_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.7
|
|
mIoU(ms+flip): 78.27
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_512x1024_80k_cityscapes/deeplabv3_r18-d8_512x1024_80k_cityscapes_20201225_021506-23dffbe2.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r50-d8_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.32
|
|
mIoU(ms+flip): 80.57
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x1024_80k_cityscapes/deeplabv3_r50-d8_512x1024_80k_cityscapes_20200606_113404-b92cfdd4.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r101-d8_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.2
|
|
mIoU(ms+flip): 81.21
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x1024_80k_cityscapes/deeplabv3_r101-d8_512x1024_80k_cityscapes_20200606_113503-9e428899.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (769,769)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
value: 180.18
|
|
lr schd: 80000
|
|
memory (GB): 1.9
|
|
Name: deeplabv3_r18-d8_769x769_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.6
|
|
mIoU(ms+flip): 78.26
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18-d8_769x769_80k_cityscapes/deeplabv3_r18-d8_769x769_80k_cityscapes_20201225_021506-6452126a.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r50-d8_769x769_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.89
|
|
mIoU(ms+flip): 81.06
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_769x769_80k_cityscapes/deeplabv3_r50-d8_769x769_80k_cityscapes_20200606_221338-788d6228.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r101-d8_769x769_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.67
|
|
mIoU(ms+flip): 80.81
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_769x769_80k_cityscapes/deeplabv3_r101-d8_769x769_80k_cityscapes_20200607_013353-60e95418.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D16-MG124
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.36
|
|
mIoU(ms+flip): 79.84
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-57bb8425.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-18b-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 71.79
|
|
lr schd: 80000
|
|
memory (GB): 1.6
|
|
Name: deeplabv3_r18b-d8_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.26
|
|
mIoU(ms+flip): 77.88
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_512x1024_80k_cityscapes/deeplabv3_r18b-d8_512x1024_80k_cityscapes_20201225_094144-46040cef.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50b-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 364.96
|
|
lr schd: 80000
|
|
memory (GB): 6.0
|
|
Name: deeplabv3_r50b-d8_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.63
|
|
mIoU(ms+flip): 80.98
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_512x1024_80k_cityscapes/deeplabv3_r50b-d8_512x1024_80k_cityscapes_20201225_155148-ec368954.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101b-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 552.49
|
|
lr schd: 80000
|
|
memory (GB): 9.5
|
|
Name: deeplabv3_r101b-d8_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.01
|
|
mIoU(ms+flip): 81.21
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_512x1024_80k_cityscapes/deeplabv3_r101b-d8_512x1024_80k_cityscapes_20201226_171821-8fd49503.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-18b-D8
|
|
crop size: (769,769)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
value: 172.71
|
|
lr schd: 80000
|
|
memory (GB): 1.8
|
|
Name: deeplabv3_r18b-d8_769x769_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.63
|
|
mIoU(ms+flip): 77.51
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r18b-d8_769x769_80k_cityscapes/deeplabv3_r18b-d8_769x769_80k_cityscapes_20201225_094144-fdc985d9.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50b-D8
|
|
crop size: (769,769)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
value: 862.07
|
|
lr schd: 80000
|
|
memory (GB): 6.8
|
|
Name: deeplabv3_r50b-d8_769x769_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.8
|
|
mIoU(ms+flip): 80.27
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50b-d8_769x769_80k_cityscapes/deeplabv3_r50b-d8_769x769_80k_cityscapes_20201225_155404-87fb0cf4.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101b-D8
|
|
crop size: (769,769)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
value: 1219.51
|
|
lr schd: 80000
|
|
memory (GB): 10.7
|
|
Name: deeplabv3_r101b-d8_769x769_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.41
|
|
mIoU(ms+flip): 80.73
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101b-d8_769x769_80k_cityscapes/deeplabv3_r101b-d8_769x769_80k_cityscapes_20201226_190843-9142ee57.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 67.75
|
|
lr schd: 80000
|
|
memory (GB): 8.9
|
|
Name: deeplabv3_r50-d8_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.42
|
|
mIoU(ms+flip): 43.28
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_80k_ade20k/deeplabv3_r50-d8_512x512_80k_ade20k_20200614_185028-0bb3f844.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 98.62
|
|
lr schd: 80000
|
|
memory (GB): 12.4
|
|
Name: deeplabv3_r101-d8_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.08
|
|
mIoU(ms+flip): 45.19
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_80k_ade20k/deeplabv3_r101-d8_512x512_80k_ade20k_20200615_021256-d89c7fa4.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: deeplabv3_r50-d8_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.66
|
|
mIoU(ms+flip): 44.09
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_160k_ade20k/deeplabv3_r50-d8_512x512_160k_ade20k_20200615_123227-5d0ee427.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: deeplabv3_r101-d8_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.0
|
|
mIoU(ms+flip): 46.66
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_160k_ade20k/deeplabv3_r101-d8_512x512_160k_ade20k_20200615_105816-b1f72b3b.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 72.05
|
|
lr schd: 20000
|
|
memory (GB): 6.1
|
|
Name: deeplabv3_r50-d8_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.17
|
|
mIoU(ms+flip): 77.42
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_20k_voc12aug/deeplabv3_r50-d8_512x512_20k_voc12aug_20200617_010906-596905ef.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 101.94
|
|
lr schd: 20000
|
|
memory (GB): 9.6
|
|
Name: deeplabv3_r101-d8_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 78.7
|
|
mIoU(ms+flip): 79.95
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_20k_voc12aug/deeplabv3_r101-d8_512x512_20k_voc12aug_20200617_010932-8d13832f.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: deeplabv3_r50-d8_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.68
|
|
mIoU(ms+flip): 78.78
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r50-d8_512x512_40k_voc12aug/deeplabv3_r50-d8_512x512_40k_voc12aug_20200613_161546-2ae96e7e.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: deeplabv3_r101-d8_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.92
|
|
mIoU(ms+flip): 79.18
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug/deeplabv3_r101-d8_512x512_40k_voc12aug_20200613_161432-0017d784.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (480,480)
|
|
value: 141.04
|
|
lr schd: 40000
|
|
memory (GB): 9.2
|
|
Name: deeplabv3_r101-d8_480x480_40k_pascal_context
|
|
Results:
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 46.55
|
|
mIoU(ms+flip): 47.81
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context/deeplabv3_r101-d8_480x480_40k_pascal_context_20200911_204118-1aa27336.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r101-d8_480x480_80k_pascal_context
|
|
Results:
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 46.42
|
|
mIoU(ms+flip): 47.53
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context/deeplabv3_r101-d8_480x480_80k_pascal_context_20200911_170155-2a21fff3.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
Name: deeplabv3_r101-d8_480x480_40k_pascal_context_59
|
|
Results:
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 52.61
|
|
mIoU(ms+flip): 54.28
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_40k_pascal_context_59/deeplabv3_r101-d8_480x480_40k_pascal_context_59_20210416_110332-cb08ea46.pth
|
|
- Config: configs/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59.py
|
|
In Collection: deeplabv3
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Name: deeplabv3_r101-d8_480x480_80k_pascal_context_59
|
|
Results:
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 52.46
|
|
mIoU(ms+flip): 54.09
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3/deeplabv3_r101-d8_480x480_80k_pascal_context_59/deeplabv3_r101-d8_480x480_80k_pascal_context_59_20210416_113002-26303993.pth
|