mmsegmentation/configs/_base_/datasets/cityscapes_832x832.py
MengzhangLI d966f98f83
[Feature] Support ICNet (#884)
* add icnet backbone

* add icnet head

* add icnet configs

* nclass -> num_classes

* Support ICNet

* ICNet

* ICNet

* Add ICNeck

* Add ICNeck

* Add ICNeck

* Add ICNeck

* Adding unittest

* Uploading models & logs

* Uploading models & logs

* add comment

* smaller test_swin.py

* try to delete test_swin.py

* delete test_unet.py

* delete test_unet.py

* temp

* smaller test_unet.py

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-30 09:31:57 -07:00

36 lines
1.3 KiB
Python

_base_ = './cityscapes.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (832, 832)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))