mmsegmentation/.dev_scripts/gather_models.py

214 lines
7.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import hashlib
import json
import os
import os.path as osp
import shutil
import torch
from mmengine import Config
from mmengine.fileio import dump
from mmengine.utils import mkdir_or_exist, scandir
# build schedule look-up table to automatically find the final model
RESULTS_LUT = ['mIoU', 'mAcc', 'aAcc']
def calculate_file_sha256(file_path):
"""calculate file sha256 hash code."""
with open(file_path, 'rb') as fp:
sha256_cal = hashlib.sha256()
sha256_cal.update(fp.read())
return sha256_cal.hexdigest()
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
if 'optimizer' in checkpoint:
del checkpoint['optimizer']
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
torch.save(checkpoint, out_file)
# The hash code calculation and rename command differ on different system
# platform.
sha = calculate_file_sha256(out_file)
final_file = out_file.rstrip('.pth') + f'-{sha[:8]}.pth'
os.rename(out_file, final_file)
# Remove prefix and suffix
final_file_name = osp.split(final_file)[1]
final_file_name = osp.splitext(final_file_name)[0]
return final_file_name
def get_final_iter(config):
iter_num = config.split('_')[-2]
assert iter_num.endswith('k')
return int(iter_num[:-1]) * 1000
def get_final_results(log_json_path, iter_num):
result_dict = dict()
last_iter = 0
with open(log_json_path) as f:
for line in f.readlines():
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
# When evaluation, the 'iter' of new log json is the evaluation
# steps on single gpu.
flag1 = ('aAcc' in log_line) or (log_line['mode'] == 'val')
flag2 = (last_iter == iter_num - 50) or (last_iter == iter_num)
if flag1 and flag2:
result_dict.update({
key: log_line[key]
for key in RESULTS_LUT if key in log_line
})
return result_dict
last_iter = log_line['iter']
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'-f', '--config-name', type=str, help='Process the selected config.')
parser.add_argument(
'-w',
'--work-dir',
default='work_dirs/',
type=str,
help='Ckpt storage root folder of benchmarked models to be gathered.')
parser.add_argument(
'-c',
'--collect-dir',
default='work_dirs/gather',
type=str,
help='Ckpt collect root folder of gathered models.')
parser.add_argument(
'--all', action='store_true', help='whether include .py and .log')
args = parser.parse_args()
return args
def main():
args = parse_args()
work_dir = args.work_dir
collect_dir = args.collect_dir
selected_config_name = args.config_name
mkdir_or_exist(collect_dir)
# find all models in the root directory to be gathered
raw_configs = list(scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
config_name = osp.splitext(osp.basename(raw_config))[0]
if osp.exists(osp.join(work_dir, config_name)):
if (selected_config_name is None
or selected_config_name == config_name):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config in used_configs:
config_name = osp.splitext(osp.basename(used_config))[0]
exp_dir = osp.join(work_dir, config_name)
# check whether the exps is finished
final_iter = get_final_iter(used_config)
final_model = f'iter_{final_iter}.pth'
model_path = osp.join(exp_dir, final_model)
# skip if the model is still training
if not osp.exists(model_path):
print(f'{used_config} train not finished yet')
continue
# get logs
log_json_paths = glob.glob(osp.join(exp_dir, '*.log.json'))
log_json_path = log_json_paths[0]
model_performance = None
for idx, _log_json_path in enumerate(log_json_paths):
model_performance = get_final_results(_log_json_path, final_iter)
if model_performance is not None:
log_json_path = _log_json_path
break
if model_performance is None:
print(f'{used_config} model_performance is None')
continue
model_time = osp.split(log_json_path)[-1].split('.')[0]
model_infos.append(
dict(
config_name=config_name,
results=model_performance,
iters=final_iter,
model_time=model_time,
log_json_path=osp.split(log_json_path)[-1]))
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
config_name = model['config_name']
model_publish_dir = osp.join(collect_dir, config_name)
publish_model_path = osp.join(model_publish_dir,
config_name + '_' + model['model_time'])
trained_model_path = osp.join(work_dir, config_name,
'iter_{}.pth'.format(model['iters']))
if osp.exists(model_publish_dir):
for file in os.listdir(model_publish_dir):
if file.endswith('.pth'):
print(f'model {file} found')
model['model_path'] = osp.abspath(
osp.join(model_publish_dir, file))
break
if 'model_path' not in model:
print(f'dir {model_publish_dir} exists, no model found')
else:
mkdir_or_exist(model_publish_dir)
# convert model
final_model_path = process_checkpoint(trained_model_path,
publish_model_path)
model['model_path'] = final_model_path
new_json_path = f'{config_name}_{model["log_json_path"]}'
# copy log
shutil.copy(
osp.join(work_dir, config_name, model['log_json_path']),
osp.join(model_publish_dir, new_json_path))
if args.all:
new_txt_path = new_json_path.rstrip('.json')
shutil.copy(
osp.join(work_dir, config_name,
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, new_txt_path))
if args.all:
# copy config to guarantee reproducibility
raw_config = osp.join('./configs', f'{config_name}.py')
Config.fromfile(raw_config).dump(
osp.join(model_publish_dir, osp.basename(raw_config)))
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
dump(models, osp.join(collect_dir, 'model_infos.json'), indent=4)
if __name__ == '__main__':
main()