## Motivation Supports inference for ultra-large-scale remote sensing images. ## Modification Add RSImageInference.py in demo. ## Use cases Taking the inference of Vaihingen dataset images using PSPNet as an example, the following settings are required: **img**: Specify the path of the image. **model**: Provide the configuration file for the model. **checkpoint**: Specify the weight file for the model. **out**: Set the output path for the results. **batch_size**: Determine the batch size used during inference. **win_size**: Specify the width and height(512x512) of the sliding window. **stride**: Set the stride(400x400) for sliding the window. **thread(default: 1)**: Specify the number of threads to be used for inference. **Inference device (default: cuda:0)**: Specify the device for inference (e.g., cuda:0 for CPU). ```shell python demo/rs_image_inference.py demo/demo.png projects/pp_mobileseg/configs/pp_mobileseg/pp_mobileseg_mobilenetv3_2x16_80k_ade20k_512x512_tiny.py pp_mobileseg_mobilenetv3_2xb16_3rdparty-tiny_512x512-ade20k-a351ebf5.pth --batch-size 8 --device cpu --thread 2 ``` --------- Co-authored-by: xiexinch <xiexinch@outlook.com> |
||
---|---|---|
.. | ||
MMSegmentation_Tutorial.ipynb | ||
demo.png | ||
image_demo.py | ||
image_demo_with_inferencer.py | ||
inference_demo.ipynb | ||
rs_image_inference.py | ||
video_demo.py |