42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from collections import defaultdict
|
|
from typing import Sequence, Union
|
|
|
|
import numpy as np
|
|
from mmengine.dataset import Compose
|
|
from mmengine.model import BaseModel
|
|
|
|
ImageType = Union[str, np.ndarray, Sequence[str], Sequence[np.ndarray]]
|
|
|
|
|
|
def _preprare_data(imgs: ImageType, model: BaseModel):
|
|
|
|
cfg = model.cfg
|
|
for t in cfg.test_pipeline:
|
|
if t.get('type') == 'LoadAnnotations':
|
|
cfg.test_pipeline.remove(t)
|
|
|
|
is_batch = True
|
|
if not isinstance(imgs, (list, tuple)):
|
|
imgs = [imgs]
|
|
is_batch = False
|
|
|
|
if isinstance(imgs[0], np.ndarray):
|
|
cfg.test_pipeline[0]['type'] = 'LoadImageFromNDArray'
|
|
|
|
# TODO: Consider using the singleton pattern to avoid building
|
|
# a pipeline for each inference
|
|
pipeline = Compose(cfg.test_pipeline)
|
|
|
|
data = defaultdict(list)
|
|
for img in imgs:
|
|
if isinstance(img, np.ndarray):
|
|
data_ = dict(img=img)
|
|
else:
|
|
data_ = dict(img_path=img)
|
|
data_ = pipeline(data_)
|
|
data['inputs'].append(data_['inputs'])
|
|
data['data_samples'].append(data_['data_samples'])
|
|
|
|
return data, is_batch
|