168 lines
5.9 KiB
Python
168 lines
5.9 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import argparse
|
|
import gzip
|
|
import os
|
|
import os.path as osp
|
|
import tarfile
|
|
import tempfile
|
|
|
|
import mmcv
|
|
from mmengine.utils import mkdir_or_exist
|
|
|
|
STARE_LEN = 20
|
|
TRAINING_LEN = 10
|
|
|
|
|
|
def un_gz(src, dst):
|
|
g_file = gzip.GzipFile(src)
|
|
with open(dst, 'wb+') as f:
|
|
f.write(g_file.read())
|
|
g_file.close()
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='Convert STARE dataset to mmsegmentation format')
|
|
parser.add_argument('image_path', help='the path of stare-images.tar')
|
|
parser.add_argument('labels_ah', help='the path of labels-ah.tar')
|
|
parser.add_argument('labels_vk', help='the path of labels-vk.tar')
|
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
|
parser.add_argument('-o', '--out_dir', help='output path')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
image_path = args.image_path
|
|
labels_ah = args.labels_ah
|
|
labels_vk = args.labels_vk
|
|
if args.out_dir is None:
|
|
out_dir = osp.join('data', 'STARE')
|
|
else:
|
|
out_dir = args.out_dir
|
|
|
|
print('Making directories...')
|
|
mkdir_or_exist(out_dir)
|
|
mkdir_or_exist(osp.join(out_dir, 'images'))
|
|
mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
|
mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
|
mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
|
mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
|
mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
|
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
|
mkdir_or_exist(osp.join(tmp_dir, 'gz'))
|
|
mkdir_or_exist(osp.join(tmp_dir, 'files'))
|
|
|
|
print('Extracting stare-images.tar...')
|
|
with tarfile.open(image_path) as f:
|
|
f.extractall(osp.join(tmp_dir, 'gz'))
|
|
|
|
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
|
|
un_gz(
|
|
osp.join(tmp_dir, 'gz', filename),
|
|
osp.join(tmp_dir, 'files',
|
|
osp.splitext(filename)[0]))
|
|
|
|
now_dir = osp.join(tmp_dir, 'files')
|
|
|
|
assert len(os.listdir(now_dir)) == STARE_LEN, \
|
|
f'len(os.listdir(now_dir)) != {STARE_LEN}'
|
|
|
|
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
|
|
img = mmcv.imread(osp.join(now_dir, filename))
|
|
mmcv.imwrite(
|
|
img,
|
|
osp.join(out_dir, 'images', 'training',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
|
|
img = mmcv.imread(osp.join(now_dir, filename))
|
|
mmcv.imwrite(
|
|
img,
|
|
osp.join(out_dir, 'images', 'validation',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
print('Removing the temporary files...')
|
|
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
|
mkdir_or_exist(osp.join(tmp_dir, 'gz'))
|
|
mkdir_or_exist(osp.join(tmp_dir, 'files'))
|
|
|
|
print('Extracting labels-ah.tar...')
|
|
with tarfile.open(labels_ah) as f:
|
|
f.extractall(osp.join(tmp_dir, 'gz'))
|
|
|
|
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
|
|
un_gz(
|
|
osp.join(tmp_dir, 'gz', filename),
|
|
osp.join(tmp_dir, 'files',
|
|
osp.splitext(filename)[0]))
|
|
|
|
now_dir = osp.join(tmp_dir, 'files')
|
|
|
|
assert len(os.listdir(now_dir)) == STARE_LEN, \
|
|
f'len(os.listdir(now_dir)) != {STARE_LEN}'
|
|
|
|
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
|
|
img = mmcv.imread(osp.join(now_dir, filename))
|
|
# The annotation img should be divided by 128, because some of
|
|
# the annotation imgs are not standard. We should set a threshold
|
|
# to convert the nonstandard annotation imgs. The value divided by
|
|
# 128 equivalent to '1 if value >= 128 else 0'
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'training',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
|
|
img = mmcv.imread(osp.join(now_dir, filename))
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'validation',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
print('Removing the temporary files...')
|
|
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
|
mkdir_or_exist(osp.join(tmp_dir, 'gz'))
|
|
mkdir_or_exist(osp.join(tmp_dir, 'files'))
|
|
|
|
print('Extracting labels-vk.tar...')
|
|
with tarfile.open(labels_vk) as f:
|
|
f.extractall(osp.join(tmp_dir, 'gz'))
|
|
|
|
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
|
|
un_gz(
|
|
osp.join(tmp_dir, 'gz', filename),
|
|
osp.join(tmp_dir, 'files',
|
|
osp.splitext(filename)[0]))
|
|
|
|
now_dir = osp.join(tmp_dir, 'files')
|
|
|
|
assert len(os.listdir(now_dir)) == STARE_LEN, \
|
|
f'len(os.listdir(now_dir)) != {STARE_LEN}'
|
|
|
|
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
|
|
img = mmcv.imread(osp.join(now_dir, filename))
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'training',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
|
|
img = mmcv.imread(osp.join(now_dir, filename))
|
|
mmcv.imwrite(
|
|
img[:, :, 0] // 128,
|
|
osp.join(out_dir, 'annotations', 'validation',
|
|
osp.splitext(filename)[0] + '.png'))
|
|
|
|
print('Removing the temporary files...')
|
|
|
|
print('Done!')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|