mmsegmentation/tests/test_models/test_necks/test_multilevel_neck.py

32 lines
1018 B
Python

import torch
from mmseg.models import MultiLevelNeck
def test_multilevel_neck():
# Test init_weights
MultiLevelNeck([266], 256).init_weights()
# Test multi feature maps
in_channels = [256, 512, 1024, 2048]
inputs = [torch.randn(1, c, 14, 14) for i, c in enumerate(in_channels)]
neck = MultiLevelNeck(in_channels, 256)
outputs = neck(inputs)
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
assert outputs[3].shape == torch.Size([1, 256, 56, 56])
# Test one feature map
in_channels = [768]
inputs = [torch.randn(1, 768, 14, 14)]
neck = MultiLevelNeck(in_channels, 256)
outputs = neck(inputs)
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
assert outputs[3].shape == torch.Size([1, 256, 56, 56])