mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
* upload original backbone and configs * ConvNext Refactor * ConvNext Refactor * convnext customization refactor with mmseg style * convnext customization refactor with mmseg style * add ade20k_640x640.py * upload files for training * delete dist_optimizer_hook and remove layer_decay_optimizer_constructor * check max(out_indices) < num_stages * add unittest * fix lint error * use MMClassification backbone * fix bugs in base_1k * add mmcls in requirements/mminstall.txt * add mmcls in requirements/mminstall.txt * fix drop_path_rate and layer_scale_init_value * use logger.info instead of print * add mmcls in runtime.txt * fix f string && delete * add doctring in LearningRateDecayOptimizerConstructor and fix mmcls version in requirements * fix typo in LearningRateDecayOptimizerConstructor * use ConvNext models in unit test for LearningRateDecayOptimizerConstructor * add unit test * fix typo * fix typo * add layer_wise and fix redundant backbone.downsample_norm in it * fix unit test * give a ground truth lr_scale and weight_decay * upload models and readme * delete 'backbone.stem_norm' and 'backbone.downsample_norm' in get_num_layer() * fix unit test and use mmcls url * update md2yml.py and metafile * fix typo
134 lines
4.4 KiB
YAML
134 lines
4.4 KiB
YAML
Models:
|
|
- Name: upernet_convnext_tiny_fp16_512x512_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ConvNeXt-T
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 50.25
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (512,512)
|
|
Training Memory (GB): 4.23
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 46.11
|
|
mIoU(ms+flip): 46.62
|
|
Config: configs/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth
|
|
- Name: upernet_convnext_small_fp16_512x512_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ConvNeXt-S
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 65.88
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (512,512)
|
|
Training Memory (GB): 5.16
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.56
|
|
mIoU(ms+flip): 49.02
|
|
Config: configs/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth
|
|
- Name: upernet_convnext_base_fp16_512x512_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ConvNeXt-B
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 69.4
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.33
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.71
|
|
mIoU(ms+flip): 49.54
|
|
Config: configs/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth
|
|
- Name: upernet_convnext_base_fp16_640x640_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ConvNeXt-B
|
|
crop size: (640,640)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 91.91
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (640,640)
|
|
Training Memory (GB): 8.53
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 52.13
|
|
mIoU(ms+flip): 52.66
|
|
Config: configs/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth
|
|
- Name: upernet_convnext_large_fp16_640x640_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ConvNeXt-L
|
|
crop size: (640,640)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 130.04
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (640,640)
|
|
Training Memory (GB): 12.08
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 53.16
|
|
mIoU(ms+flip): 53.38
|
|
Config: configs/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth
|
|
- Name: upernet_convnext_xlarge_fp16_640x640_160k_ade20k
|
|
In Collection: UperNet
|
|
Metadata:
|
|
backbone: ConvNeXt-XL
|
|
crop size: (640,640)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 157.98
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (640,640)
|
|
Training Memory (GB): 26.16
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 53.58
|
|
mIoU(ms+flip): 54.11
|
|
Config: configs/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth
|