Peng Lu 788b37f78f
[Feature] Support NYU depth estimation dataset (#3269)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Please describe the motivation of this PR and the goal you want to
achieve through this PR.

## Modification

Please briefly describe what modification is made in this PR.
1. add `NYUDataset`class
2. add script to process NYU dataset
3. add transforms for loading depth map
4. add docs & unittest

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
5. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
6. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
7. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-08-17 11:39:44 +08:00

124 lines
5.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List
import mmengine.fileio as fileio
from mmseg.registry import DATASETS
from .basesegdataset import BaseSegDataset
@DATASETS.register_module()
class NYUDataset(BaseSegDataset):
"""NYU depth estimation dataset. The file structure should be.
.. code-block:: none
├── data
│ ├── nyu
│ │ ├── images
│ │ │ ├── train
│ │ │ │ ├── scene_xxx.jpg
│ │ │ │ ├── ...
│ │ │ ├── test
│ │ ├── annotations
│ │ │ ├── train
│ │ │ │ ├── scene_xxx.png
│ │ │ │ ├── ...
│ │ │ ├── test
Args:
ann_file (str): Annotation file path. Defaults to ''.
metainfo (dict, optional): Meta information for dataset, such as
specify classes to load. Defaults to None.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Defaults to None.
data_prefix (dict, optional): Prefix for training data. Defaults to
dict(img_path='images', depth_map_path='annotations').
img_suffix (str): Suffix of images. Default: '.jpg'
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
filter_cfg (dict, optional): Config for filter data. Defaults to None.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Defaults to None which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy. Defaults
to True.
pipeline (list, optional): Processing pipeline. Defaults to [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Defaults to False.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=True``. Defaults to False.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Defaults to 1000.
ignore_index (int): The label index to be ignored. Default: 255
reduce_zero_label (bool): Whether to mark label zero as ignored.
Default to False.
backend_args (dict, Optional): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to None.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
METAINFO = dict(
classes=('printer_room', 'bathroom', 'living_room', 'study',
'conference_room', 'study_room', 'kitchen', 'home_office',
'bedroom', 'dinette', 'playroom', 'indoor_balcony',
'laundry_room', 'basement', 'excercise_room', 'foyer',
'home_storage', 'cafe', 'furniture_store', 'office_kitchen',
'student_lounge', 'dining_room', 'reception_room',
'computer_lab', 'classroom', 'office', 'bookstore'))
def __init__(self,
data_prefix=dict(
img_path='images', depth_map_path='annotations'),
img_suffix='.jpg',
depth_map_suffix='.png',
**kwargs) -> None:
super().__init__(
data_prefix=data_prefix,
img_suffix=img_suffix,
seg_map_suffix=depth_map_suffix,
**kwargs)
def _get_category_id_from_filename(self, image_fname: str) -> int:
"""Retrieve the category ID from the given image filename."""
image_fname = osp.basename(image_fname)
position = image_fname.find(next(filter(str.isdigit, image_fname)), 0)
categoty_name = image_fname[:position - 1]
if categoty_name not in self._metainfo['classes']:
return -1
else:
return self._metainfo['classes'].index(categoty_name)
def load_data_list(self) -> List[dict]:
"""Load annotation from directory or annotation file.
Returns:
list[dict]: All data info of dataset.
"""
data_list = []
img_dir = self.data_prefix.get('img_path', None)
ann_dir = self.data_prefix.get('depth_map_path', None)
_suffix_len = len(self.img_suffix)
for img in fileio.list_dir_or_file(
dir_path=img_dir,
list_dir=False,
suffix=self.img_suffix,
recursive=True,
backend_args=self.backend_args):
data_info = dict(img_path=osp.join(img_dir, img))
if ann_dir is not None:
depth_map = img[:-_suffix_len] + self.seg_map_suffix
data_info['depth_map_path'] = osp.join(ann_dir, depth_map)
data_info['seg_fields'] = []
data_info['category_id'] = self._get_category_id_from_filename(img)
data_list.append(data_info)
data_list = sorted(data_list, key=lambda x: x['img_path'])
return data_list