276 lines
13 KiB
YAML
276 lines
13 KiB
YAML
Collections:
|
|
- Name: BiSeNetV1
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- COCO-Stuff 164k
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
README: configs/bisenetv1/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.44
|
|
mIoU(ms+flip): 77.05
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-18-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.69
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.37
|
|
mIoU(ms+flip): 76.91
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-18-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 5.69
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.16
|
|
mIoU(ms+flip): 77.24
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 32
|
|
Architecture:
|
|
- R-18-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 11.17
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.92
|
|
mIoU(ms+flip): 78.87
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 15.39
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.68
|
|
mIoU(ms+flip): 79.57
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 15.39
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 25.45
|
|
mIoU(ms+flip): 26.15
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py
|
|
Metadata:
|
|
Training Data: COCO-Stuff 164k
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-18-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 28.55
|
|
mIoU(ms+flip): 29.26
|
|
Config: configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
|
|
Metadata:
|
|
Training Data: COCO-Stuff 164k
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-18-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 6.33
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 29.82
|
|
mIoU(ms+flip): 30.33
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py
|
|
Metadata:
|
|
Training Data: COCO-Stuff 164k
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 34.88
|
|
mIoU(ms+flip): 35.37
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
|
|
Metadata:
|
|
Training Data: COCO-Stuff 164k
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.28
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 31.14
|
|
mIoU(ms+flip): 31.76
|
|
Config: configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
|
|
Metadata:
|
|
Training Data: COCO-Stuff 164k
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|
|
- Name: bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
|
|
In Collection: BiSeNetV1
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 37.38
|
|
mIoU(ms+flip): 37.99
|
|
Config: configs/bisenetv1/bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
|
|
Metadata:
|
|
Training Data: COCO-Stuff 164k
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D32
|
|
- BiSeNetV1
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 10.36
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220.log.json
|
|
Paper:
|
|
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/1808.00897
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
|
|
Framework: PyTorch
|