171 lines
5.8 KiB
Python
171 lines
5.8 KiB
Python
import pytest
|
|
import torch
|
|
|
|
from mmseg.models.backbones.twins import (PCPVT, SVT,
|
|
ConditionalPositionEncoding,
|
|
LocallyGroupedSelfAttention)
|
|
|
|
|
|
def test_pcpvt():
|
|
# Test normal input
|
|
H, W = (224, 224)
|
|
temp = torch.randn((1, 3, H, W))
|
|
model = PCPVT(
|
|
embed_dims=[32, 64, 160, 256],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
norm_after_stage=False)
|
|
model.init_weights()
|
|
outs = model(temp)
|
|
assert outs[0].shape == (1, 32, H // 4, W // 4)
|
|
assert outs[1].shape == (1, 64, H // 8, W // 8)
|
|
assert outs[2].shape == (1, 160, H // 16, W // 16)
|
|
assert outs[3].shape == (1, 256, H // 32, W // 32)
|
|
|
|
|
|
def test_svt():
|
|
# Test normal input
|
|
H, W = (224, 224)
|
|
temp = torch.randn((1, 3, H, W))
|
|
model = SVT(
|
|
embed_dims=[32, 64, 128],
|
|
num_heads=[1, 2, 4],
|
|
mlp_ratios=[4, 4, 4],
|
|
qkv_bias=False,
|
|
depths=[4, 4, 4],
|
|
windiow_sizes=[7, 7, 7],
|
|
norm_after_stage=True)
|
|
|
|
model.init_weights()
|
|
outs = model(temp)
|
|
assert outs[0].shape == (1, 32, H // 4, W // 4)
|
|
assert outs[1].shape == (1, 64, H // 8, W // 8)
|
|
assert outs[2].shape == (1, 128, H // 16, W // 16)
|
|
|
|
|
|
def test_svt_init():
|
|
path = 'PATH_THAT_DO_NOT_EXIST'
|
|
# Test all combinations of pretrained and init_cfg
|
|
# pretrained=None, init_cfg=None
|
|
model = SVT(pretrained=None, init_cfg=None)
|
|
assert model.init_cfg is None
|
|
model.init_weights()
|
|
|
|
# pretrained=None
|
|
# init_cfg loads pretrain from an non-existent file
|
|
model = SVT(
|
|
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
|
|
# Test loading a checkpoint from an non-existent file
|
|
with pytest.raises(OSError):
|
|
model.init_weights()
|
|
|
|
# pretrained=None
|
|
# init_cfg=123, whose type is unsupported
|
|
model = SVT(pretrained=None, init_cfg=123)
|
|
with pytest.raises(TypeError):
|
|
model.init_weights()
|
|
|
|
# pretrained loads pretrain from an non-existent file
|
|
# init_cfg=None
|
|
model = SVT(pretrained=path, init_cfg=None)
|
|
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
|
|
# Test loading a checkpoint from an non-existent file
|
|
with pytest.raises(OSError):
|
|
model.init_weights()
|
|
|
|
# pretrained loads pretrain from an non-existent file
|
|
# init_cfg loads pretrain from an non-existent file
|
|
with pytest.raises(AssertionError):
|
|
model = SVT(
|
|
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
with pytest.raises(AssertionError):
|
|
model = SVT(pretrained=path, init_cfg=123)
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg=None
|
|
with pytest.raises(TypeError):
|
|
model = SVT(pretrained=123, init_cfg=None)
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg loads pretrain from an non-existent file
|
|
with pytest.raises(AssertionError):
|
|
model = SVT(
|
|
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg=123, whose type is unsupported
|
|
with pytest.raises(AssertionError):
|
|
model = SVT(pretrained=123, init_cfg=123)
|
|
|
|
|
|
def test_pcpvt_init():
|
|
path = 'PATH_THAT_DO_NOT_EXIST'
|
|
# Test all combinations of pretrained and init_cfg
|
|
# pretrained=None, init_cfg=None
|
|
model = PCPVT(pretrained=None, init_cfg=None)
|
|
assert model.init_cfg is None
|
|
model.init_weights()
|
|
|
|
# pretrained=None
|
|
# init_cfg loads pretrain from an non-existent file
|
|
model = PCPVT(
|
|
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
|
|
# Test loading a checkpoint from an non-existent file
|
|
with pytest.raises(OSError):
|
|
model.init_weights()
|
|
|
|
# pretrained=None
|
|
# init_cfg=123, whose type is unsupported
|
|
model = PCPVT(pretrained=None, init_cfg=123)
|
|
with pytest.raises(TypeError):
|
|
model.init_weights()
|
|
|
|
# pretrained loads pretrain from an non-existent file
|
|
# init_cfg=None
|
|
model = PCPVT(pretrained=path, init_cfg=None)
|
|
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
|
|
# Test loading a checkpoint from an non-existent file
|
|
with pytest.raises(OSError):
|
|
model.init_weights()
|
|
|
|
# pretrained loads pretrain from an non-existent file
|
|
# init_cfg loads pretrain from an non-existent file
|
|
with pytest.raises(AssertionError):
|
|
model = PCPVT(
|
|
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
with pytest.raises(AssertionError):
|
|
model = PCPVT(pretrained=path, init_cfg=123)
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg=None
|
|
with pytest.raises(TypeError):
|
|
model = PCPVT(pretrained=123, init_cfg=None)
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg loads pretrain from an non-existent file
|
|
with pytest.raises(AssertionError):
|
|
model = PCPVT(
|
|
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg=123, whose type is unsupported
|
|
with pytest.raises(AssertionError):
|
|
model = PCPVT(pretrained=123, init_cfg=123)
|
|
|
|
|
|
def test_locallygrouped_self_attention_module():
|
|
LSA = LocallyGroupedSelfAttention(embed_dims=32, window_size=3)
|
|
outs = LSA(torch.randn(1, 3136, 32), (56, 56))
|
|
assert outs.shape == torch.Size([1, 3136, 32])
|
|
|
|
|
|
def test_conditional_position_encoding_module():
|
|
CPE = ConditionalPositionEncoding(in_channels=32, embed_dims=32, stride=2)
|
|
outs = CPE(torch.randn(1, 3136, 32), (56, 56))
|
|
assert outs.shape == torch.Size([1, 784, 32])
|