* [Enhancement] Change readme style and prepare for metafiles update. * Update apcnet github repo url. * add code snippet. * split code snippet & official repo. * update md2yml hook. * Update metafiles. * Add converted from attribute. * process conflict. * Put defualt variable value. * update bisenet v2 metafile. * checkout to ubuntu environment. * pop empty attribute & make task attribute list. * update readme style * update readme style * update metafiles Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn> |
||
---|---|---|
.. | ||
README.md | ||
deeplabv3_m-v2-d8_512x512_160k_ade20k.py | ||
deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py | ||
deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py | ||
deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py | ||
fcn_m-v2-d8_512x512_160k_ade20k.py | ||
fcn_m-v2-d8_512x1024_80k_cityscapes.py | ||
mobilenet_v2.yml | ||
pspnet_m-v2-d8_512x512_160k_ade20k.py | ||
pspnet_m-v2-d8_512x1024_80k_cityscapes.py |
README.md
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Introduction
MobileNetV2 (CVPR'2018)
@inproceedings{sandler2018mobilenetv2,
title={Mobilenetv2: Inverted residuals and linear bottlenecks},
author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4510--4520},
year={2018}
}
Results and models
Cityscapes
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | 61.54 | - | config | model | log |
PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | 70.23 | - | config | model | log |
DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | 73.84 | - | config | model | log |
DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | 75.20 | - | config | model | log |
ADE20k
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | 19.71 | - | config | model | log |
PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | 29.68 | - | config | model | log |
DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | 34.08 | - | config | model | log |
DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | 34.02 | - | config | model | log |