mmsegmentation/configs/ann/metafile.yml
Junjun2016 36c81441c1
update metafiles (#661)
* update metafiles

* update metafiles
2021-07-01 22:31:00 +08:00

312 lines
9.1 KiB
YAML

Collections:
- Name: ANN
Metadata:
Training Data:
- Cityscapes
- Pascal VOC 2012 + Aug
- ADE20K
Models:
- Name: ann_r50-d8_512x1024_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 269.54
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.40
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth
Config: configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py
- Name: ann_r101-d8_512x1024_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 392.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.55
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth
Config: configs/ann/ann_r101-d8_512x1024_40k_cityscapes.py
- Name: ann_r50-d8_769x769_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 588.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.89
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth
Config: configs/ann/ann_r50-d8_769x769_40k_cityscapes.py
- Name: ann_r101-d8_769x769_40k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 869.57
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.32
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth
Config: configs/ann/ann_r101-d8_769x769_40k_cityscapes.py
- Name: ann_r50-d8_512x1024_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 269.54
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.34
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth
Config: configs/ann/ann_r50-d8_512x1024_80k_cityscapes.py
- Name: ann_r101-d8_512x1024_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 392.16
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.14
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth
Config: configs/ann/ann_r101-d8_512x1024_80k_cityscapes.py
- Name: ann_r50-d8_769x769_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 588.24
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.88
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth
Config: configs/ann/ann_r50-d8_769x769_80k_cityscapes.py
- Name: ann_r101-d8_769x769_80k_cityscapes
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 869.57
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.80
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth
Config: configs/ann/ann_r101-d8_769x769_80k_cityscapes.py
- Name: ann_r50-d8_512x512_80k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 47.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.01
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth
Config: configs/ann/ann_r50-d8_512x512_80k_ade20k.py
- Name: ann_r101-d8_512x512_80k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 70.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.94
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth
Config: configs/ann/ann_r101-d8_512x512_80k_ade20k.py
- Name: ann_r50-d8_512x512_160k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 47.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.74
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth
Config: configs/ann/ann_r50-d8_512x512_160k_ade20k.py
- Name: ann_r101-d8_512x512_160k_ade20k
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 70.82
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.94
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth
Config: configs/ann/ann_r101-d8_512x512_160k_ade20k.py
- Name: ann_r50-d8_512x512_20k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 47.8
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.86
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth
Config: configs/ann/ann_r50-d8_512x512_20k_voc12aug.py
- Name: ann_r101-d8_512x512_20k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 71.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.47
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth
Config: configs/ann/ann_r101-d8_512x512_20k_voc12aug.py
- Name: ann_r50-d8_512x512_40k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 47.8
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.56
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth
Config: configs/ann/ann_r50-d8_512x512_40k_voc12aug.py
- Name: ann_r101-d8_512x512_40k_voc12aug
In Collection: ANN
Metadata:
inference time (ms/im):
- value: 71.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.70
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth
Config: configs/ann/ann_r101-d8_512x512_40k_voc12aug.py