mmsegmentation/configs/mobilenet_v2/metafile.yml

153 lines
4.8 KiB
YAML

Models:
- Name: fcn_m-v2-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (ms/im):
- value: 70.42
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 61.54
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth
Config: configs/fcn/fcn_m-v2-d8_512x1024_80k_cityscapes.py
- Name: pspnet_m-v2-d8_512x1024_80k_cityscapes
In Collection: PSPNet
Metadata:
inference time (ms/im):
- value: 89.29
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 70.23
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth
Config: configs/pspnet/pspnet_m-v2-d8_512x1024_80k_cityscapes.py
- Name: deeplabv3_m-v2-d8_512x1024_80k_cityscapes
In Collection: DeepLabV3
Metadata:
inference time (ms/im):
- value: 119.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.84
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth
Config: configs/deeplabv3/deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py
- Name: deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes
In Collection: DeepLabV3+
Metadata:
inference time (ms/im):
- value: 119.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.20
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth
Config: configs/deeplabv3+/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py
- Name: fcn_m-v2-d8_512x512_160k_ade20k
In Collection: FCN
Metadata:
inference time (ms/im):
- value: 15.53
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 19.71
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth
Config: configs/fcn/fcn_m-v2-d8_512x512_160k_ade20k.py
- Name: pspnet_m-v2-d8_512x512_160k_ade20k
In Collection: PSPNet
Metadata:
inference time (ms/im):
- value: 17.33
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 29.68
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth
Config: configs/pspnet/pspnet_m-v2-d8_512x512_160k_ade20k.py
- Name: deeplabv3_m-v2-d8_512x512_160k_ade20k
In Collection: DeepLabV3
Metadata:
inference time (ms/im):
- value: 25.06
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 34.08
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth
Config: configs/deeplabv3/deeplabv3_m-v2-d8_512x512_160k_ade20k.py
- Name: deeplabv3plus_m-v2-d8_512x512_160k_ade20k
In Collection: DeepLabV3+
Metadata:
inference time (ms/im):
- value: 23.2
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 34.02
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth
Config: configs/deeplabv3+/deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py