mmsegmentation/configs/maskformer/maskformer.yml

102 lines
3.3 KiB
YAML

Collections:
- Name: MaskFormer
Metadata:
Training Data:
- Usage
- ADE20K
Paper:
URL: https://arxiv.org/abs/2107.06278
Title: 'MaskFormer: Per-Pixel Classification is Not All You Need for Semantic
Segmentation'
README: configs/maskformer/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/models/dense_heads/maskformer_head.py#L21
Version: dev-3.x
Converted From:
Code: https://github.com/facebookresearch/MaskFormer/
Models:
- Name: maskformer_r50-d32_8xb2-160k_ade20k-512x512
In Collection: MaskFormer
Metadata:
backbone: R-50-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 23.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 3.29
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.29
Config: configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-3a9cfe45.pth
- Name: maskformer_r101-d32_8xb2-160k_ade20k-512x512
In Collection: MaskFormer
Metadata:
backbone: R-101-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 28.65
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.12
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.11
Config: configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512/maskformer_r101-d32_8xb2-160k_ade20k-512x512_20221031_223053-84adbfcb.pth
- Name: maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512
In Collection: MaskFormer
Metadata:
backbone: Swin-T
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 24.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 3.73
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.69
Config: configs/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-t_upernet_8xb2-160k_ade20k-512x512_20221114_232813-f14e7ce0.pth
- Name: maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512
In Collection: MaskFormer
Metadata:
backbone: Swin-S
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 37.06
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.33
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 49.36
Config: configs/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/maskformer/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512/maskformer_swin-s_upernet_8xb2-160k_ade20k-512x512_20221115_114710-723512c7.pth