293 lines
9.5 KiB
Markdown
293 lines
9.5 KiB
Markdown
# Tutorial 2: Customize Datasets
|
|
|
|
## Data configuration
|
|
|
|
`data` in config file is the variable for data configuration, to define the arguments that are used in datasets and dataloaders.
|
|
|
|
Here is an example of data configuration:
|
|
|
|
```python
|
|
data = dict(
|
|
samples_per_gpu=4,
|
|
workers_per_gpu=4,
|
|
train=dict(
|
|
type='ADE20KDataset',
|
|
data_root='data/ade/ADEChallengeData2016',
|
|
img_dir='images/training',
|
|
ann_dir='annotations/training',
|
|
pipeline=train_pipeline),
|
|
val=dict(
|
|
type='ADE20KDataset',
|
|
data_root='data/ade/ADEChallengeData2016',
|
|
img_dir='images/validation',
|
|
ann_dir='annotations/validation',
|
|
pipeline=test_pipeline),
|
|
test=dict(
|
|
type='ADE20KDataset',
|
|
data_root='data/ade/ADEChallengeData2016',
|
|
img_dir='images/validation',
|
|
ann_dir='annotations/validation',
|
|
pipeline=test_pipeline))
|
|
```
|
|
|
|
- `train`, `val` and `test`: The [`config`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/config.md)s to build dataset instances for model training, validation and testing by
|
|
using [`build and registry`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/registry.md) mechanism.
|
|
|
|
- `samples_per_gpu`: How many samples per batch and per gpu to load during model training, and the `batch_size` of training is equal to `samples_per_gpu` times gpu number, e.g. when using 8 gpus for distributed data parallel training and `samples_per_gpu=4`, the `batch_size` is `8*4=32`.
|
|
If you would like to define `batch_size` for testing and validation, please use `test_dataloader` and
|
|
`val_dataloader` with mmseg >=0.24.1.
|
|
|
|
- `workers_per_gpu`: How many subprocesses per gpu to use for data loading. `0` means that the data will be loaded in the main process.
|
|
|
|
**Note:** `samples_per_gpu` only works for model training, and the default setting of `samples_per_gpu` is 1 in mmseg when model testing and validation (DO NOT support batch inference yet).
|
|
|
|
**Note:** before v0.24.1, except `train`, `val` `test`, `samples_per_gpu` and `workers_per_gpu`, the other keys in `data` must be the
|
|
input keyword arguments for `dataloader` in pytorch, and the dataloaders used for model training, validation and testing have the same input arguments.
|
|
In v0.24.1, mmseg supports to use `train_dataloader`, `test_dataloader` and `val_dataloader` to specify different keyword arguments, and still supports the overall arguments definition but the specific dataloader setting has a higher priority.
|
|
|
|
Here is an example for specific dataloader:
|
|
|
|
```python
|
|
data = dict(
|
|
samples_per_gpu=4,
|
|
workers_per_gpu=4,
|
|
shuffle=True,
|
|
train=dict(type='xxx', ...),
|
|
val=dict(type='xxx', ...),
|
|
test=dict(type='xxx', ...),
|
|
# Use different batch size during validation and testing.
|
|
val_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False),
|
|
test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False))
|
|
```
|
|
|
|
Assume only one gpu used for model training and testing, as the priority of the overall arguments definition is low, the batch_size
|
|
for training is `4` and dataset will be shuffled, and batch_size for testing and validation is `1`, and dataset will not be shuffled.
|
|
|
|
To make data configuration much clearer, we recommend use specific dataloader setting instead of overall dataloader setting after v0.24.1, just like:
|
|
|
|
```python
|
|
data = dict(
|
|
train=dict(type='xxx', ...),
|
|
val=dict(type='xxx', ...),
|
|
test=dict(type='xxx', ...),
|
|
# Use specific dataloader setting
|
|
train_dataloader=dict(samples_per_gpu=4, workers_per_gpu=4, shuffle=True),
|
|
val_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False),
|
|
test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False))
|
|
```
|
|
|
|
**Note:** in model training, default values in the script of mmseg for dataloader are `shuffle=True, and drop_last=True`,
|
|
in model validation and testing, default values are `shuffle=False, and drop_last=False`
|
|
|
|
## Customize datasets by reorganizing data
|
|
|
|
The simplest way is to convert your dataset to organize your data into folders.
|
|
|
|
An example of file structure is as followed.
|
|
|
|
```none
|
|
├── data
|
|
│ ├── my_dataset
|
|
│ │ ├── img_dir
|
|
│ │ │ ├── train
|
|
│ │ │ │ ├── xxx{img_suffix}
|
|
│ │ │ │ ├── yyy{img_suffix}
|
|
│ │ │ │ ├── zzz{img_suffix}
|
|
│ │ │ ├── val
|
|
│ │ ├── ann_dir
|
|
│ │ │ ├── train
|
|
│ │ │ │ ├── xxx{seg_map_suffix}
|
|
│ │ │ │ ├── yyy{seg_map_suffix}
|
|
│ │ │ │ ├── zzz{seg_map_suffix}
|
|
│ │ │ ├── val
|
|
|
|
```
|
|
|
|
A training pair will consist of the files with same suffix in img_dir/ann_dir.
|
|
|
|
If `split` argument is given, only part of the files in img_dir/ann_dir will be loaded.
|
|
We may specify the prefix of files we would like to be included in the split txt.
|
|
|
|
More specifically, for a split txt like following,
|
|
|
|
```none
|
|
xxx
|
|
zzz
|
|
```
|
|
|
|
Only
|
|
`data/my_dataset/img_dir/train/xxx{img_suffix}`,
|
|
`data/my_dataset/img_dir/train/zzz{img_suffix}`,
|
|
`data/my_dataset/ann_dir/train/xxx{seg_map_suffix}`,
|
|
`data/my_dataset/ann_dir/train/zzz{seg_map_suffix}` will be loaded.
|
|
|
|
:::{note}
|
|
The annotations are images of shape (H, W), the value pixel should fall in range `[0, num_classes - 1]`.
|
|
You may use `'P'` mode of [pillow](https://pillow.readthedocs.io/en/stable/handbook/concepts.html#palette) to create your annotation image with color.
|
|
:::
|
|
|
|
## Customize datasets by mixing dataset
|
|
|
|
MMSegmentation also supports to mix dataset for training.
|
|
Currently it supports to concat, repeat and multi-image mix datasets.
|
|
|
|
### Repeat dataset
|
|
|
|
We use `RepeatDataset` as wrapper to repeat the dataset.
|
|
For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following
|
|
|
|
```python
|
|
dataset_A_train = dict(
|
|
type='RepeatDataset',
|
|
times=N,
|
|
dataset=dict( # This is the original config of Dataset_A
|
|
type='Dataset_A',
|
|
...
|
|
pipeline=train_pipeline
|
|
)
|
|
)
|
|
```
|
|
|
|
### Concatenate dataset
|
|
|
|
There 2 ways to concatenate the dataset.
|
|
|
|
1. If the datasets you want to concatenate are in the same type with different annotation files,
|
|
you can concatenate the dataset configs like the following.
|
|
|
|
1. You may concatenate two `ann_dir`.
|
|
|
|
```python
|
|
dataset_A_train = dict(
|
|
type='Dataset_A',
|
|
img_dir = 'img_dir',
|
|
ann_dir = ['anno_dir_1', 'anno_dir_2'],
|
|
pipeline=train_pipeline
|
|
)
|
|
```
|
|
|
|
2. You may concatenate two `split`.
|
|
|
|
```python
|
|
dataset_A_train = dict(
|
|
type='Dataset_A',
|
|
img_dir = 'img_dir',
|
|
ann_dir = 'anno_dir',
|
|
split = ['split_1.txt', 'split_2.txt'],
|
|
pipeline=train_pipeline
|
|
)
|
|
```
|
|
|
|
3. You may concatenate two `ann_dir` and `split` simultaneously.
|
|
|
|
```python
|
|
dataset_A_train = dict(
|
|
type='Dataset_A',
|
|
img_dir = 'img_dir',
|
|
ann_dir = ['anno_dir_1', 'anno_dir_2'],
|
|
split = ['split_1.txt', 'split_2.txt'],
|
|
pipeline=train_pipeline
|
|
)
|
|
```
|
|
|
|
In this case, `ann_dir_1` and `ann_dir_2` are corresponding to `split_1.txt` and `split_2.txt`.
|
|
|
|
2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.
|
|
|
|
```python
|
|
dataset_A_train = dict()
|
|
dataset_B_train = dict()
|
|
|
|
data = dict(
|
|
imgs_per_gpu=2,
|
|
workers_per_gpu=2,
|
|
train = [
|
|
dataset_A_train,
|
|
dataset_B_train
|
|
],
|
|
val = dataset_A_val,
|
|
test = dataset_A_test
|
|
)
|
|
```
|
|
|
|
A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following.
|
|
|
|
```python
|
|
dataset_A_train = dict(
|
|
type='RepeatDataset',
|
|
times=N,
|
|
dataset=dict(
|
|
type='Dataset_A',
|
|
...
|
|
pipeline=train_pipeline
|
|
)
|
|
)
|
|
dataset_A_val = dict(
|
|
...
|
|
pipeline=test_pipeline
|
|
)
|
|
dataset_A_test = dict(
|
|
...
|
|
pipeline=test_pipeline
|
|
)
|
|
dataset_B_train = dict(
|
|
type='RepeatDataset',
|
|
times=M,
|
|
dataset=dict(
|
|
type='Dataset_B',
|
|
...
|
|
pipeline=train_pipeline
|
|
)
|
|
)
|
|
data = dict(
|
|
imgs_per_gpu=2,
|
|
workers_per_gpu=2,
|
|
train = [
|
|
dataset_A_train,
|
|
dataset_B_train
|
|
],
|
|
val = dataset_A_val,
|
|
test = dataset_A_test
|
|
)
|
|
|
|
```
|
|
|
|
### Multi-image Mix Dataset
|
|
|
|
We use `MultiImageMixDataset` as a wrapper to mix images from multiple datasets.
|
|
`MultiImageMixDataset` can be used by multiple images mixed data augmentation
|
|
like mosaic and mixup.
|
|
|
|
An example of using `MultiImageMixDataset` with `Mosaic` data augmentation:
|
|
|
|
```python
|
|
train_pipeline = [
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations'),
|
|
dict(type='RandomMosaic', prob=1),
|
|
dict(type='Resize', img_scale=(1024, 512), keep_ratio=True),
|
|
dict(type='RandomFlip', prob=0.5),
|
|
dict(type='Normalize', **img_norm_cfg),
|
|
dict(type='DefaultFormatBundle'),
|
|
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
|
]
|
|
|
|
train_dataset = dict(
|
|
type='MultiImageMixDataset',
|
|
dataset=dict(
|
|
classes=classes,
|
|
palette=palette,
|
|
type=dataset_type,
|
|
reduce_zero_label=False,
|
|
img_dir=data_root + "images/train",
|
|
ann_dir=data_root + "annotations/train",
|
|
pipeline=[
|
|
dict(type='LoadImageFromFile'),
|
|
dict(type='LoadAnnotations'),
|
|
]
|
|
),
|
|
pipeline=train_pipeline
|
|
)
|
|
|
|
```
|