mmsegmentation/tests/test_models/test_losses/test_dice_loss.py

60 lines
2.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.losses import DiceLoss
@pytest.mark.parametrize('naive_dice', [True, False])
def test_dice_loss(naive_dice):
loss_class = DiceLoss
pred = torch.rand((10, 4, 4))
target = torch.rand((10, 4, 4))
weight = torch.rand(10)
# Test loss forward
loss = loss_class(naive_dice=naive_dice)(pred, target)
assert isinstance(loss, torch.Tensor)
# Test loss forward with weight
loss = loss_class(naive_dice=naive_dice)(pred, target, weight)
assert isinstance(loss, torch.Tensor)
# Test loss forward with reduction_override
loss = loss_class(naive_dice=naive_dice)(
pred, target, reduction_override='mean')
assert isinstance(loss, torch.Tensor)
# Test loss forward with avg_factor
loss = loss_class(naive_dice=naive_dice)(pred, target, avg_factor=10)
assert isinstance(loss, torch.Tensor)
with pytest.raises(ValueError):
# loss can evaluate with avg_factor only if
# reduction is None, 'none' or 'mean'.
reduction_override = 'sum'
loss_class(naive_dice=naive_dice)(
pred, target, avg_factor=10, reduction_override=reduction_override)
# Test loss forward with avg_factor and reduction
for reduction_override in [None, 'none', 'mean']:
loss_class(naive_dice=naive_dice)(
pred, target, avg_factor=10, reduction_override=reduction_override)
assert isinstance(loss, torch.Tensor)
# Test loss forward with has_acted=False and use_sigmoid=False
with pytest.raises(NotImplementedError):
loss_class(
use_sigmoid=False, activate=True, naive_dice=naive_dice)(pred,
target)
# Test loss forward with weight.ndim != loss.ndim
with pytest.raises(AssertionError):
weight = torch.rand((2, 8))
loss_class(naive_dice=naive_dice)(pred, target, weight)
# Test loss forward with len(weight) != len(pred)
with pytest.raises(AssertionError):
weight = torch.rand(8)
loss_class(naive_dice=naive_dice)(pred, target, weight)