sennnnn 2800d43507 [Enhancement] Change readme style and Update metafiles. (#895)
* [Enhancement] Change readme style and prepare for metafiles update.

* Update apcnet github repo url.

* add code snippet.

* split code snippet & official repo.

* update md2yml hook.

* Update metafiles.

* Add converted from attribute.

* process conflict.

* Put defualt variable value.

* update bisenet v2 metafile.

* checkout to ubuntu environment.

* pop empty attribute & make task attribute list.

* update readme style

* update readme style

* update metafiles

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-28 16:25:37 +08:00

100 lines
3.1 KiB
YAML

Collections:
- Name: fp16
Metadata:
Training Data:
- Cityscapes
Paper:
URL: https://arxiv.org/abs/1710.03740
Title: Mixed Precision Training
README: configs/fp16/README.md
Code:
URL: https://github.com/open-mmlab/mmcv/blob/v1.3.14/mmcv/runner/hooks/optimizer.py#L134
Version: v1.3.14
Converted From:
Code: https://github.com/baidu-research/DeepBench
Models:
- Name: fcn_r101-d8_512x1024_80k_fp16_cityscapes
In Collection: fp16
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 115.74
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 5.37
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.8
Config: configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921-50245227.pth
- Name: pspnet_r101-d8_512x1024_80k_fp16_cityscapes
In Collection: fp16
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 114.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 5.34
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.46
Config: configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919-ade37931.pth
- Name: deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes
In Collection: fp16
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 259.07
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 5.75
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.48
Config: configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-bc86dc84.pth
- Name: deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes
In Collection: fp16
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
inference time (ms/im):
- value: 127.06
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
memory (GB): 6.35
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.46
Config: configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-cc58bc8d.pth