mmsegmentation/configs/segformer/segformer.yml

170 lines
5.2 KiB
YAML

Collections:
- Name: segformer
Metadata:
Training Data:
- ADE20k
Paper:
URL: https://arxiv.org/abs/2105.15203
Title: resize image to multiple of 32, improve SegFormer by 0.5-1.0 mIoU.
README: configs/segformer/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
Version: v0.17.0
Converted From:
Code: https://github.com/NVlabs/SegFormer
Models:
- Name: segformer_mit-b0_512x512_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B0
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 19.49
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 2.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 37.41
mIoU(ms+flip): 38.34
Config: configs/segformer/segformer_mit-b0_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth
- Name: segformer_mit-b1_512x512_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B1
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 20.98
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 2.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 40.97
mIoU(ms+flip): 42.54
Config: configs/segformer/segformer_mit-b1_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth
- Name: segformer_mit-b2_512x512_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B2
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 32.38
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 3.6
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 45.58
mIoU(ms+flip): 47.03
Config: configs/segformer/segformer_mit-b2_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth
- Name: segformer_mit-b3_512x512_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B3
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 45.23
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 4.8
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 47.82
mIoU(ms+flip): 48.81
Config: configs/segformer/segformer_mit-b3_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth
- Name: segformer_mit-b4_512x512_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B4
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 64.72
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 6.1
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 48.46
mIoU(ms+flip): 49.76
Config: configs/segformer/segformer_mit-b4_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth
- Name: segformer_mit-b5_512x512_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B5
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 84.1
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 7.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 49.13
mIoU(ms+flip): 50.22
Config: configs/segformer/segformer_mit-b5_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth
- Name: segformer_mit-b5_640x640_160k_ade20k
In Collection: segformer
Metadata:
backbone: MIT-B5
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 88.5
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (640,640)
memory (GB): 11.5
Results:
- Task: Semantic Segmentation
Dataset: ADE20k
Metrics:
mIoU: 49.62
mIoU(ms+flip): 50.36
Config: configs/segformer/segformer_mit-b5_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth