mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 21:43:50 +08:00
* [Enhancement] Change readme style and prepare for metafiles update. * Update apcnet github repo url. * add code snippet. * split code snippet & official repo. * update md2yml hook. * Update metafiles. * Add converted from attribute. * process conflict. * Put defualt variable value. * update bisenet v2 metafile. * checkout to ubuntu environment. * pop empty attribute & make task attribute list. * update readme style * update readme style * update metafiles Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
98 lines
2.9 KiB
YAML
98 lines
2.9 KiB
YAML
Collections:
|
|
- Name: setr
|
|
Metadata:
|
|
Training Data:
|
|
- ADE20K
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
README: configs/setr/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/fudan-zvg/SETR
|
|
Models:
|
|
- Name: setr_naive_512x512_160k_b16_ade20k
|
|
In Collection: setr
|
|
Metadata:
|
|
backbone: ViT-L
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 211.86
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 18.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.28
|
|
mIoU(ms+flip): 49.56
|
|
Config: configs/setr/setr_naive_512x512_160k_b16_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth
|
|
- Name: setr_pup_512x512_160k_b16_ade20k
|
|
In Collection: setr
|
|
Metadata:
|
|
backbone: ViT-L
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 222.22
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 19.54
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.24
|
|
mIoU(ms+flip): 49.99
|
|
Config: configs/setr/setr_pup_512x512_160k_b16_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth
|
|
- Name: setr_mla_512x512_160k_b8_ade20k
|
|
In Collection: setr
|
|
Metadata:
|
|
backbone: ViT-L
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
memory (GB): 10.96
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.34
|
|
mIoU(ms+flip): 49.05
|
|
Config: configs/setr/setr_mla_512x512_160k_b8_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth
|
|
- Name: setr_mla_512x512_160k_b16_ade20k
|
|
In Collection: setr
|
|
Metadata:
|
|
backbone: ViT-L
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 190.48
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 17.3
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.54
|
|
mIoU(ms+flip): 49.37
|
|
Config: configs/setr/setr_mla_512x512_160k_b16_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth
|