sennnnn 2800d43507 [Enhancement] Change readme style and Update metafiles. (#895)
* [Enhancement] Change readme style and prepare for metafiles update.

* Update apcnet github repo url.

* add code snippet.

* split code snippet & official repo.

* update md2yml hook.

* Update metafiles.

* Add converted from attribute.

* process conflict.

* Put defualt variable value.

* update bisenet v2 metafile.

* checkout to ubuntu environment.

* pop empty attribute & make task attribute list.

* update readme style

* update readme style

* update metafiles

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-28 16:25:37 +08:00

98 lines
2.9 KiB
YAML

Collections:
- Name: setr
Metadata:
Training Data:
- ADE20K
Paper:
URL: https://arxiv.org/abs/2012.15840
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers
README: configs/setr/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
Version: v0.17.0
Converted From:
Code: https://github.com/fudan-zvg/SETR
Models:
- Name: setr_naive_512x512_160k_b16_ade20k
In Collection: setr
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 211.86
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 18.4
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.28
mIoU(ms+flip): 49.56
Config: configs/setr/setr_naive_512x512_160k_b16_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth
- Name: setr_pup_512x512_160k_b16_ade20k
In Collection: setr
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 222.22
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 19.54
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.24
mIoU(ms+flip): 49.99
Config: configs/setr/setr_pup_512x512_160k_b16_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth
- Name: setr_mla_512x512_160k_b8_ade20k
In Collection: setr
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
memory (GB): 10.96
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.34
mIoU(ms+flip): 49.05
Config: configs/setr/setr_mla_512x512_160k_b8_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth
- Name: setr_mla_512x512_160k_b16_ade20k
In Collection: setr
Metadata:
backbone: ViT-L
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 190.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
memory (GB): 17.3
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.54
mIoU(ms+flip): 49.37
Config: configs/setr/setr_mla_512x512_160k_b16_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth