53 lines
1.6 KiB
Python
53 lines
1.6 KiB
Python
# model settings
|
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
|
model = dict(
|
|
type='EncoderDecoder',
|
|
pretrained='open-mmlab://msra/hrnetv2_w18',
|
|
backbone=dict(
|
|
type='HRNet',
|
|
norm_cfg=norm_cfg,
|
|
norm_eval=False,
|
|
extra=dict(
|
|
stage1=dict(
|
|
num_modules=1,
|
|
num_branches=1,
|
|
block='BOTTLENECK',
|
|
num_blocks=(4, ),
|
|
num_channels=(64, )),
|
|
stage2=dict(
|
|
num_modules=1,
|
|
num_branches=2,
|
|
block='BASIC',
|
|
num_blocks=(4, 4),
|
|
num_channels=(18, 36)),
|
|
stage3=dict(
|
|
num_modules=4,
|
|
num_branches=3,
|
|
block='BASIC',
|
|
num_blocks=(4, 4, 4),
|
|
num_channels=(18, 36, 72)),
|
|
stage4=dict(
|
|
num_modules=3,
|
|
num_branches=4,
|
|
block='BASIC',
|
|
num_blocks=(4, 4, 4, 4),
|
|
num_channels=(18, 36, 72, 144)))),
|
|
decode_head=dict(
|
|
type='FCNHead',
|
|
in_channels=[18, 36, 72, 144],
|
|
in_index=(0, 1, 2, 3),
|
|
channels=sum([18, 36, 72, 144]),
|
|
input_transform='resize_concat',
|
|
kernel_size=1,
|
|
num_convs=1,
|
|
concat_input=False,
|
|
dropout_ratio=-1,
|
|
num_classes=19,
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)))
|
|
# model training and testing settings
|
|
train_cfg = dict()
|
|
test_cfg = dict(mode='whole')
|