mmsegmentation/tests/test_metrics.py

351 lines
13 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmseg.core.evaluation import (eval_metrics, mean_dice, mean_fscore,
mean_iou)
from mmseg.core.evaluation.metrics import f_score
def get_confusion_matrix(pred_label, label, num_classes, ignore_index):
"""Intersection over Union
Args:
pred_label (np.ndarray): 2D predict map
label (np.ndarray): label 2D label map
num_classes (int): number of categories
ignore_index (int): index ignore in evaluation
"""
mask = (label != ignore_index)
pred_label = pred_label[mask]
label = label[mask]
n = num_classes
inds = n * label + pred_label
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
return mat
# This func is deprecated since it's not memory efficient
def legacy_mean_iou(results, gt_seg_maps, num_classes, ignore_index):
num_imgs = len(results)
assert len(gt_seg_maps) == num_imgs
total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
for i in range(num_imgs):
mat = get_confusion_matrix(
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
total_mat += mat
all_acc = np.diag(total_mat).sum() / total_mat.sum()
acc = np.diag(total_mat) / total_mat.sum(axis=1)
iou = np.diag(total_mat) / (
total_mat.sum(axis=1) + total_mat.sum(axis=0) - np.diag(total_mat))
return all_acc, acc, iou
# This func is deprecated since it's not memory efficient
def legacy_mean_dice(results, gt_seg_maps, num_classes, ignore_index):
num_imgs = len(results)
assert len(gt_seg_maps) == num_imgs
total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
for i in range(num_imgs):
mat = get_confusion_matrix(
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
total_mat += mat
all_acc = np.diag(total_mat).sum() / total_mat.sum()
acc = np.diag(total_mat) / total_mat.sum(axis=1)
dice = 2 * np.diag(total_mat) / (
total_mat.sum(axis=1) + total_mat.sum(axis=0))
return all_acc, acc, dice
# This func is deprecated since it's not memory efficient
def legacy_mean_fscore(results,
gt_seg_maps,
num_classes,
ignore_index,
beta=1):
num_imgs = len(results)
assert len(gt_seg_maps) == num_imgs
total_mat = np.zeros((num_classes, num_classes), dtype=np.float)
for i in range(num_imgs):
mat = get_confusion_matrix(
results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index)
total_mat += mat
all_acc = np.diag(total_mat).sum() / total_mat.sum()
recall = np.diag(total_mat) / total_mat.sum(axis=1)
precision = np.diag(total_mat) / total_mat.sum(axis=0)
fv = np.vectorize(f_score)
fscore = fv(precision, recall, beta=beta)
return all_acc, recall, precision, fscore
def test_metrics():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
# Test the availability of arg: ignore_index.
label[:, 2, 5:10] = ignore_index
# Test the correctness of the implementation of mIoU calculation.
ret_metrics = eval_metrics(
results, label, num_classes, ignore_index, metrics='mIoU')
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'IoU']
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
# Test the correctness of the implementation of mDice calculation.
ret_metrics = eval_metrics(
results, label, num_classes, ignore_index, metrics='mDice')
all_acc, acc, dice = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'Dice']
all_acc_l, acc_l, dice_l = legacy_mean_dice(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(dice, dice_l)
# Test the correctness of the implementation of mDice calculation.
ret_metrics = eval_metrics(
results, label, num_classes, ignore_index, metrics='mFscore')
all_acc, recall, precision, fscore = ret_metrics['aAcc'], ret_metrics[
'Recall'], ret_metrics['Precision'], ret_metrics['Fscore']
all_acc_l, recall_l, precision_l, fscore_l = legacy_mean_fscore(
results, label, num_classes, ignore_index)
assert all_acc == all_acc_l
assert np.allclose(recall, recall_l)
assert np.allclose(precision, precision_l)
assert np.allclose(fscore, fscore_l)
# Test the correctness of the implementation of joint calculation.
ret_metrics = eval_metrics(
results,
label,
num_classes,
ignore_index,
metrics=['mIoU', 'mDice', 'mFscore'])
all_acc, acc, iou, dice, precision, recall, fscore = ret_metrics[
'aAcc'], ret_metrics['Acc'], ret_metrics['IoU'], ret_metrics[
'Dice'], ret_metrics['Precision'], ret_metrics[
'Recall'], ret_metrics['Fscore']
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
assert np.allclose(dice, dice_l)
assert np.allclose(precision, precision_l)
assert np.allclose(recall, recall_l)
assert np.allclose(fscore, fscore_l)
# Test the correctness of calculation when arg: num_classes is larger
# than the maximum value of input maps.
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
ret_metrics = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics='mIoU',
nan_to_num=-1)
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'IoU']
assert acc[-1] == -1
assert iou[-1] == -1
ret_metrics = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics='mDice',
nan_to_num=-1)
all_acc, acc, dice = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'Dice']
assert acc[-1] == -1
assert dice[-1] == -1
ret_metrics = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics='mFscore',
nan_to_num=-1)
all_acc, precision, recall, fscore = ret_metrics['aAcc'], ret_metrics[
'Precision'], ret_metrics['Recall'], ret_metrics['Fscore']
assert precision[-1] == -1
assert recall[-1] == -1
assert fscore[-1] == -1
ret_metrics = eval_metrics(
results,
label,
num_classes,
ignore_index=255,
metrics=['mDice', 'mIoU', 'mFscore'],
nan_to_num=-1)
all_acc, acc, iou, dice, precision, recall, fscore = ret_metrics[
'aAcc'], ret_metrics['Acc'], ret_metrics['IoU'], ret_metrics[
'Dice'], ret_metrics['Precision'], ret_metrics[
'Recall'], ret_metrics['Fscore']
assert acc[-1] == -1
assert dice[-1] == -1
assert iou[-1] == -1
assert precision[-1] == -1
assert recall[-1] == -1
assert fscore[-1] == -1
# Test the bug which is caused by torch.histc.
# torch.histc: https://pytorch.org/docs/stable/generated/torch.histc.html
# When the arg:bins is set to be same as arg:max,
# some channels of mIoU may be nan.
results = np.array([np.repeat(31, 59)])
label = np.array([np.arange(59)])
num_classes = 59
ret_metrics = eval_metrics(
results, label, num_classes, ignore_index=255, metrics='mIoU')
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'IoU']
assert not np.any(np.isnan(iou))
def test_mean_iou():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
label[:, 2, 5:10] = ignore_index
ret_metrics = mean_iou(results, label, num_classes, ignore_index)
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'IoU']
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
ret_metrics = mean_iou(
results, label, num_classes, ignore_index=255, nan_to_num=-1)
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'IoU']
assert acc[-1] == -1
assert acc[-1] == -1
def test_mean_dice():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
label[:, 2, 5:10] = ignore_index
ret_metrics = mean_dice(results, label, num_classes, ignore_index)
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'Dice']
all_acc_l, acc_l, dice_l = legacy_mean_dice(results, label, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, dice_l)
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
ret_metrics = mean_dice(
results, label, num_classes, ignore_index=255, nan_to_num=-1)
all_acc, acc, dice = ret_metrics['aAcc'], ret_metrics['Acc'], ret_metrics[
'Dice']
assert acc[-1] == -1
assert dice[-1] == -1
def test_mean_fscore():
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
label = np.random.randint(0, num_classes, size=pred_size)
label[:, 2, 5:10] = ignore_index
ret_metrics = mean_fscore(results, label, num_classes, ignore_index)
all_acc, recall, precision, fscore = ret_metrics['aAcc'], ret_metrics[
'Recall'], ret_metrics['Precision'], ret_metrics['Fscore']
all_acc_l, recall_l, precision_l, fscore_l = legacy_mean_fscore(
results, label, num_classes, ignore_index)
assert all_acc == all_acc_l
assert np.allclose(recall, recall_l)
assert np.allclose(precision, precision_l)
assert np.allclose(fscore, fscore_l)
ret_metrics = mean_fscore(
results, label, num_classes, ignore_index, beta=2)
all_acc, recall, precision, fscore = ret_metrics['aAcc'], ret_metrics[
'Recall'], ret_metrics['Precision'], ret_metrics['Fscore']
all_acc_l, recall_l, precision_l, fscore_l = legacy_mean_fscore(
results, label, num_classes, ignore_index, beta=2)
assert all_acc == all_acc_l
assert np.allclose(recall, recall_l)
assert np.allclose(precision, precision_l)
assert np.allclose(fscore, fscore_l)
results = np.random.randint(0, 5, size=pred_size)
label = np.random.randint(0, 4, size=pred_size)
ret_metrics = mean_fscore(
results, label, num_classes, ignore_index=255, nan_to_num=-1)
all_acc, recall, precision, fscore = ret_metrics['aAcc'], ret_metrics[
'Recall'], ret_metrics['Precision'], ret_metrics['Fscore']
assert recall[-1] == -1
assert precision[-1] == -1
assert fscore[-1] == -1
def test_filename_inputs():
import cv2
import tempfile
def save_arr(input_arrays: list, title: str, is_image: bool, dir: str):
filenames = []
SUFFIX = '.png' if is_image else '.npy'
for idx, arr in enumerate(input_arrays):
filename = '{}/{}-{}{}'.format(dir, title, idx, SUFFIX)
if is_image:
cv2.imwrite(filename, arr)
else:
np.save(filename, arr)
filenames.append(filename)
return filenames
pred_size = (10, 30, 30)
num_classes = 19
ignore_index = 255
results = np.random.randint(0, num_classes, size=pred_size)
labels = np.random.randint(0, num_classes, size=pred_size)
labels[:, 2, 5:10] = ignore_index
with tempfile.TemporaryDirectory() as temp_dir:
result_files = save_arr(results, 'pred', False, temp_dir)
label_files = save_arr(labels, 'label', True, temp_dir)
ret_metrics = eval_metrics(
result_files,
label_files,
num_classes,
ignore_index,
metrics='mIoU')
all_acc, acc, iou = ret_metrics['aAcc'], ret_metrics[
'Acc'], ret_metrics['IoU']
all_acc_l, acc_l, iou_l = legacy_mean_iou(results, labels, num_classes,
ignore_index)
assert all_acc == all_acc_l
assert np.allclose(acc, acc_l)
assert np.allclose(iou, iou_l)