1.7 KiB
Visualization
MMSegmentation provides segmentation visualization hook, used to visualize validation and testing process prediction results.
Usage
Users can modify default_hooks
at each schedule_x.py
config file.
For exsample, In _base_/schedules/schedule_20k.py
, modify the SegVisualizationHook
configuration, set draw
to True
to enable the storage of network inference results, interval
indicates the sampling interval of the prediction results, and when set to 1, each inference result of the network will be saved. interval
is set to 50 by default:
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='SegVisualizationHook', draw=True, interval=1))
vis_backends = [dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend')]
visualizer = dict(
type='SegLocalVisualizer', vis_backends=vis_backends, name='visualizer')
View visualization results in a local folder or use tensorboard.
Find the vis_data
path of work_dir
after starting training or testing, for example, the vis_data path of a particular test is as follows:
work_dirs/test_visual/20220810_115248/vis_data
The stored results of the local visualization are kept in vis_image
under vis_data
, while the tensorboard visualization results are executed with the following command:
tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data