Junjun2016 372646caf5 update metafiles (#661)
* update metafiles

* update metafiles
2021-07-01 22:31:00 +08:00

312 lines
9.4 KiB
YAML

Collections:
- Name: DANet
Metadata:
Training Data:
- Cityscapes
- Pascal VOC 2012 + Aug
- ADE20K
Models:
- Name: danet_r50-d8_512x1024_40k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 375.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.74
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth
Config: configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py
- Name: danet_r101-d8_512x1024_40k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 502.51
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.52
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth
Config: configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py
- Name: danet_r50-d8_769x769_40k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 641.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.88
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth
Config: configs/danet/danet_r50-d8_769x769_40k_cityscapes.py
- Name: danet_r101-d8_769x769_40k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 934.58
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.88
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth
Config: configs/danet/danet_r101-d8_769x769_40k_cityscapes.py
- Name: danet_r50-d8_512x1024_80k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 375.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.34
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth
Config: configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py
- Name: danet_r101-d8_512x1024_80k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 502.51
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.41
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth
Config: configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py
- Name: danet_r50-d8_769x769_80k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 641.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.27
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth
Config: configs/danet/danet_r50-d8_769x769_80k_cityscapes.py
- Name: danet_r101-d8_769x769_80k_cityscapes
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 934.58
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.47
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth
Config: configs/danet/danet_r101-d8_769x769_80k_cityscapes.py
- Name: danet_r50-d8_512x512_80k_ade20k
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 47.17
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.66
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth
Config: configs/danet/danet_r50-d8_512x512_80k_ade20k.py
- Name: danet_r101-d8_512x512_80k_ade20k
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 70.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth
Config: configs/danet/danet_r101-d8_512x512_80k_ade20k.py
- Name: danet_r50-d8_512x512_160k_ade20k
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 47.17
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.45
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth
Config: configs/danet/danet_r50-d8_512x512_160k_ade20k.py
- Name: danet_r101-d8_512x512_160k_ade20k
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 70.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.17
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth
Config: configs/danet/danet_r101-d8_512x512_160k_ade20k.py
- Name: danet_r50-d8_512x512_20k_voc12aug
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 47.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.45
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth
Config: configs/danet/danet_r50-d8_512x512_20k_voc12aug.py
- Name: danet_r101-d8_512x512_20k_voc12aug
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 72.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.02
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth
Config: configs/danet/danet_r101-d8_512x512_20k_voc12aug.py
- Name: danet_r50-d8_512x512_40k_voc12aug
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 47.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.37
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth
Config: configs/danet/danet_r50-d8_512x512_40k_voc12aug.py
- Name: danet_r101-d8_512x512_40k_voc12aug
In Collection: DANet
Metadata:
inference time (ms/im):
- value: 72.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.51
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth
Config: configs/danet/danet_r101-d8_512x512_40k_voc12aug.py