mmsegmentation/configs/dmnet/metafile.yml

235 lines
7.0 KiB
YAML

Collections:
- Name: DMNet
Metadata:
Training Data:
- Cityscapes
- ADE20K
Models:
- Name: dmnet_r50-d8_512x1024_40k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 273.22
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.78
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201214_115717-5e88fa33.pth
Config: configs/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes.py
- Name: dmnet_r101-d8_512x1024_40k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 393.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.37
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201214_115716-abc9d111.pth
Config: configs/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes.py
- Name: dmnet_r50-d8_769x769_40k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 636.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.49
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201214_115717-2a2628d7.pth
Config: configs/dmnet/dmnet_r50-d8_769x769_40k_cityscapes.py
- Name: dmnet_r101-d8_769x769_40k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 990.1
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.62
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201214_115718-b650de90.pth
Config: configs/dmnet/dmnet_r101-d8_769x769_40k_cityscapes.py
- Name: dmnet_r50-d8_512x1024_80k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 273.22
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.07
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201214_115716-987f51e3.pth
Config: configs/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes.py
- Name: dmnet_r101-d8_512x1024_80k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 393.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201214_115705-b1ff208a.pth
Config: configs/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes.py
- Name: dmnet_r50-d8_769x769_80k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 636.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.22
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201214_115718-7ea9fa12.pth
Config: configs/dmnet/dmnet_r50-d8_769x769_80k_cityscapes.py
- Name: dmnet_r101-d8_769x769_80k_cityscapes
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 990.1
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.19
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201214_115716-a7fbc2ab.pth
Config: configs/dmnet/dmnet_r101-d8_769x769_80k_cityscapes.py
- Name: dmnet_r50-d8_512x512_80k_ade20k
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 47.73
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.37
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201214_115705-a8626293.pth
Config: configs/dmnet/dmnet_r50-d8_512x512_80k_ade20k.py
- Name: dmnet_r101-d8_512x512_80k_ade20k
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 72.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.34
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201214_115704-c656c3fb.pth
Config: configs/dmnet/dmnet_r101-d8_512x512_80k_ade20k.py
- Name: dmnet_r50-d8_512x512_160k_ade20k
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 47.73
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.15
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201214_115706-25fb92c2.pth
Config: configs/dmnet/dmnet_r50-d8_512x512_160k_ade20k.py
- Name: dmnet_r101-d8_512x512_160k_ade20k
In Collection: DMNet
Metadata:
inference time (ms/im):
- value: 72.05
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.42
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201214_115705-73f9a8d7.pth
Config: configs/dmnet/dmnet_r101-d8_512x512_160k_ade20k.py